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Abstract

We consider a linear space of piecewise polynomials in three variables which are globally smooth,
i.e. trivariateC1-splines of arbitrary polynomial degree. The splines are defined on type-6 tetrahedral
partitions, which are natural generalizations of the four-directional mesh. By using Bernstein–Bézier
techniques, we analyze the structure of the spaces and establish formulae for the dimension of the
smooth splines on such uniform type partitions.
© 2004 Elsevier Inc. All rights reserved.
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1. Introduction

Spline spaces are of particular interest in approximation theory and computer aided
geometric design. For splines in one variable there exists an almost completely developed
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theory (cf.[6,17,22,24]). On the other hand, much less is known for bivariate and trivariate
splines (cf.[9,32], and the references therein), i.e. splines which are defined on triangulations
and tetrahedral partitions, respectively. The main reason for this is that these spaces have
a more complex structure than univariate spline spaces, and even the most basic problems
for these spaces are sometimes difficult to solve.

Efficient approximation and interpolation methods using multivariate splines (cf.[20],
and the references therein, and for instance, the bivariate approaches of[11,13,19,21])
require some knowledge on the structure of these spaces. One such basic structural question
in multivariate spline theory is to determine the dimension (i.e. the number of degrees of
freedom) of the spaces. This problem is easy to solve for continuous multivariate splines,
but the situation is completely different and stands in striking contrast to univariate theory
if we consider multivariate splines satisfying smoothness conditions.

In this case, the problem of determining the dimension of splines on given partitions
becomes a complex task particularly when the degree of the splines is low. For bivariate
splines on given triangulations the most general results are lower and upper bounds on the
dimension (cf.[25,26]). Moreover, the dimension is known for splines on uniform partitions
(cf. [10]), on arbitrary triangular cells (cf.[27]), and for certain degrees (cf.[2,14,15]). For
smooth trivariate splines (non-trivial) bounds on the dimension of the spaces are difficult
to obtain in general, and it has been recognized that even for splines defined on arbitrary
tetrahedral (half) cells an exact dimension count would require at least some knowledge
on the dimension of bivariate spline spaces of arbitrary degree (cf.[3, Example 25];[4,
Remark 66]).

There are only a few papers on the dimension of trivariate splines and in fact very little is
known about these spaces to date. Early results known from the finite element literature (cf.
[33]) deal with certain subspaces (which are now called super spline spaces) of splines with
relatively high degree. For splines of low degrees, results are known mainly forC1-splines.
For instance, Alfeld[1] developed a local Hermite interpolation method using trivariate
quintic super splines on tetrahedral partitions, where all the tetrahedra are split into four
subtetrahedra (trivariate Clough–Tocher split). QuinticC1-splines with super smoothness
conditions on uniform type partitions and on certain classes of tetrahedral partitions were
investigated in connection with the local interpolation methods of Schumaker and Sorokina
[28], and Lai and Le Méhauté[16]. Farin and Worsey[31] generalized the bivariate Clough–
Tocher element for cubicC1-splines by splitting each tetrahedron into 12 subtetrahedra.
For an application of this method in the context of so-called A-patches, see Bajaj et al.[5].
As a byproduct of these methods the dimension of the spaces on the resulting tetrahedral
partitions was determined.

In this paper, we determine the dimension of trivariateC1-splines of arbitrary polynomial
degree on uniform type tetrahedral partitions�, where no tetrahedron is split. The parti-
tions� are obtained as a natural generalization of the four-directional mesh known from
the bivariate spline theory. Roughly speaking, given a uniform cube partition of a three-
dimensional domain, each cubeQ is subdivided into 24 tetrahedra which have the center
of Q (i.e. the intersection point of the four diagonals inQ) as a common vertex (see Fig.2,
left). The partitions� are called type-6 tetrahedral partitions because they are obtained from
slicing each cubeQwith the six planes which contain two opposite edges inQ. We analyze
the structure of theC1-splines on� by using the piecewise Bernstein–Bézier representa-
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tion of the splines and determine the dimension of the trivariate splines by constructing a
suitable minimal determining setM for the spaces (i.e. roughly speaking a subset of the
domain points such that the associated Bernstein–Bézier coefficients uniquely determine
the splines while all the smoothness conditions are satisfied, seeAlfeld et al.[2]). To do this,
we use a well-known result (cf.[7,12], see also[9]) which characterizesC1-smoothness
across the common triangular faces of two neighboring polynomial pieces in Bernstein–
Bézier representation. Our approach works as follows. We first give minimal determining
sets forC1-splines on a particular tetrahedral cell, i.e. one cube which is subdivided into
24 tetrahedra. Then, we construct step by step a minimal determining setM for the whole
C1-spline space. This is done inductively by considering the tetrahedra of the partition in
an appropriate order (see the proof of Theorem6.1 in Section 6), where in each step the
remaining degrees of freedom are determined. Counting the number of points inM we
obtain explicit formulae for the dimension of theC1-spline spaces of arbitrary polynomial
degree (Theorem3.1and Corollary3.2), while our construction ofM (to be found in the
beginning of Section 6) gives some deeper insight into the structure of the spaces. The proof
of this result is complex.

The paper is organized as follows. In Section 2 we give some preliminaries on trivariate
splines, their piecewise Bernstein–Bézier representation, minimal determining sets, and
smoothness conditions. In Section 3, we define uniform tetrahedral partitions� and state
our main results.We give explicit formulae for the dimension ofC1-spline spaces of arbitrary
degree on�. In Section 4, we introduce some notation and we rewrite theC1-smoothness
conditions of the spaces in a convenient form which is needed for the arguments developed
in the subsequent sections. Section 5 contains minimal determining sets forC1-splines on a
special tetrahedral cell which consists of 24 tetrahedra. These results are used in Section 6
where we construct a suitable minimal determining set for the spline spaces and prove our
main results. The paper concludes with some remarks in the final section.

2. Trivariate splines, Bernstein–Bézier representation and MDS

We briefly recall some notation well-known in multivariate spline theory (cf.[4,7,9,12]).
For any integerq, we call

Pq = span{xiyj zk : i, j, k�0, i + j + k�q}

the
(
q+3

3

)
dimensional space oftrivariate polynomials of total degree q. Given a (non-

degenerate) tetrahedronT = [v0, v1, v2, v3] in R3 with verticesv0, v1, v2, andv3, the linear
polynomials�� ∈ P1, � = 0, . . . ,3, with the interpolation property��(v�) = ��,�, � =
0, . . . ,3, are called thebarycentric coordinates w.r.t. T. (Here, and in the following��,�
denotes Kronecker’s symbol.) Every polynomialp ∈ Pq can be written in itsBernstein –
Bézier representation as

p =
∑

i+j+k+�=q

ai,j,k,� B
q,T
i,j,k,�, (2.1)



160 T. Hangelbroek et al. / Journal of Approximation Theory 131 (2004) 157–184

where

B
q,T
i,j,k,� = q!

i!j !k!�! �i0�
j
1�

k
2�

�
3 ∈ Pq, i + j + k + � = q,

are theBernstein polynomials of degree q w.r.t. T. EachBernstein –Bézier coefficient
ai,j,k,� ∈ R of p is associated with thedomain point �Ti,j,k,� = (iv0 + jv1 +kv2 +�v3)/q,

and theset of domain points in T is denoted byDq,T = {�Ti,j,k,� : i + j + k + � = q}.
A point �Ti,j,k,� ∈ Dq,T is said to bein distance m of the triangular face[v0, v1, v2] of T,
if � = m.

We call a set of tetrahedra� a tetrahedral partition of a finite polyhedral domain
� ⊆ R3 if the intersection of any two different tetrahedra from� is a common vertex,
common edge or common triangle, and the union of all tetrahedra from� is equal to�.
Given a tetrahedral partition� of � andr ∈ {−1, . . . , q − 1}, we set

Sr
q(�) = {s ∈ Cr(�) : s|T ∈ Pq for all tetrahedraT ∈ �}

for the space oftrivariate Cr -splines of degree q w.r.t. �.
The coefficientsa�Ti,j,k,�

(s) = ai,j,k,�(s) := ai,j,k,�(s|T ), i+j+k+� = q, of s ∈ S0
q (�)

in representation (2.1) of its polynomial pieces s|T ∈ Pq, T ∈ �, are uniquely associated
with thedomain points in � which we denote by

Dq,� =
⋃
T ∈�

Dq,T .

Given a vertexv of � andT1 = [v, v1
1, v

1
2, v

1
3], . . . , Tnv = [v, vnv1 , v

nv
2 , v

nv
3 ] the tetrahedra

in � with common vertexv, for m ∈ {0, . . . , q} we call

Rm(v) =
nv⋃
�=1

{�T�q−m,i,j,k : i + j + k = m}

thering with distance maround v. Moreover, form ∈ {0, . . . , q}, the set

Dm(v) =
m⋃
�=0

R�(v)

is called thedisk of radius maround v. (As in Schumaker and Sorokina[28], we use the
same terms as for bivariate splines, here. In order to avoid confusions, we note that in the
trivariate settingRm(v) andDm(v) are sometimes called shell with distancem aroundv
and ball of radiusmaroundv, respectively.)

Following Alfeld et al.[2], we call M ⊆ Dq,� a determining set (DS) for a linear
subspace S of S0

q (�), if setting the coefficientsa�(s), � ∈ M of a splines ∈ S to zero,
implies thats ≡ 0. A determining setM is calledminimal determining set (MDS) for
S, if no determining set forS with fewer elements thanM exists. Equivalently,M is a
MDS, if the following property holds: if we set the coefficientsa�(s), � ∈ M, of a spline
s ∈ S to arbitrary values, then all its coefficientsa�(s), � ∈ Dq,� are uniquely determined,
i.e. s is uniquely determined. IfM is a minimal determining set forS, then it is obvious
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Fig. 1. Illustration of the six smoothness conditions given by Eq. (4.4) (left) and (4.7) (right) for the case of piecewise
cubics, i.e.q=3. Smoothness conditions across the common triangular face of two neighboring tetrahedra which
degenerate to univariate smoothness conditions (i.e. three coefficients are involved in each condition) are shown
on the left, while the non-degenerate case (i.e. five coefficients are involved in each condition, no barycentric
coordinate vanishes at the opposite vertex) is shown on the right. In both cases, the BB-coefficients associated
with domain points shown as white dots are not involved in any smoothness conditions across the shaded triangular
face, while the remaining BB-coefficients (illustrated as grey dots) are involved in such conditions

that #(M) coincides with the dimension dimS of S. (Here, and throughout the paper we
denote by # the cardinality of a finite set, and by dim the dimension of a linear space.)

Given an arbitrary tetrahedral partition�, the dimension ofS0
q (�), q�1, is easy to

determine (cf.[3, Theorem 10]). In this case, it is obvious thatDq,� is a MDS forS0
q (�)

and a straight forward computation shows that

dimS0
q (�) = (

q−1
3

)
T� + (

q−1
2

)
F� + (q − 1) E� + V�, q�1, (2.2)

whereT� is the number of tetrahedra of�, F� is the number of triangular faces of�,E� is
the number of edges of�, andV� is the number of vertices of�. (Here, and in the following
we set

(
i
j

) := 0, if i < j .) For later use, we note that if we set, in addition,VI for the number
of interior vertices of�, VB for the number of boundary vertices of�, FI for number of
interior triangular faces of�, andEI for the number of interior edges of�, then the Euler
type formulae

VB = 2 T� − FI + 2,

T� = VI − EI + FI + 1,
(2.3)

hold true (see[4], for instance). The problem of determining the dimension of trivariate
splines becomes more difficult if we consider subspacesS of S0

q (�) possessing smoothness
conditions.

In the following, we are interested inC1-splines, i.e. we consider the subspacesS =
S1
q (�), q�2 (where� is the tetrahedral partition of uniform type described in the next sec-

tion). In order to construct minimal determining sets for these spaces, we use the well-known
smoothness conditions connected with the piecewise Bernstein–Bézier representation of
the splines (cf.[7,9,12]). LetT = [v0, v1, v2, v3], T̃ = [v0, v1, v2, ṽ3] ∈ �, be two different
tetrahedra of�, and suppose thats ∈ S0

q (�) is given in its piecewise representation (2.1) with
coefficientsai,j,k,� = ai,j,k,�(s) = ai,j,k,�(s|T ) and ãi,j,k,� = ãi,j,k,�(s) = ai,j,k,�(s|T̃ ),
i.e. ai,j,k,0 = ãi,j,k,0, i + j + k = q. Thens is C1-smooth across the common triangular
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faceT ∩ T̃ = [v0, v1, v2] of T andT̃ , if and only if for all i + j + k = q − 1,

ãi,j,k,1 = ai+1,j,k,0 �0(ṽ3) + ai,j+1,k,0 �1(ṽ3) + ai,j,k+1,0 �2(ṽ3)

+ai,j,k,1 �3(ṽ3), (2.4)

where��, � = 0, . . . ,3, are the barycentric coordinates w.r.t.T. Examples for these linear
constraints are illustrated in Fig.1 where the common triangular face is shaded grey, the
domain points associated with the BB-coefficients involved in the smoothness conditions are
shown as grey dots, and the conditions are illustrated as thick lines and small tetrahedra with
thick boundary lines, respectively. It is known that the trivariate conditions (2.4) become
lower-dimensional conditions if some of the involved barycentric coordinates�� vanish at
ṽ3. These are called thedegenerate cases . Fig. 1 (left) shows such an example, where
two barycentric coordinates are zero atṽ3 and hence the smoothness conditions degenerate
to conditions as in the univariate case (see Eq. (4.4) in Section 4, for instance). In the
non-degenerate case (no barycentric coordinate�� vanishes at̃v3) each of the smoothness
conditions involves 5 BB-coefficients which is shown on the right of Fig.1 (see Eq. (4.7) in
Section 4, for instance). In the next section we consider tetrahedral partitions such that for
the correspondingC1-splines only these two types of smoothness conditions appear. This
is described in more detail in Section 4.

By using the piecewise Bernstein–Bézier representation of the splines theC1-smoothness
of its polynomial pieces across the common triangular face of two neighboring tetrahedra
is easily described by conditions (2.4). However, if we consider a complete tetrahedral
partition �, then the analysis of these connections becomes a complex task even in the
case when� is of uniform type because for an overallC1-smooth spline these are many
conditions (see Section 4) which have to be simultaneously satisfied across all the four
(interior) triangular faces of every tetrahedron and they cannot (in general) be considered
independently.

3. Main results

In the remainder of this paper we consider a tetrahedral partition� of the unit cube
� = [0, 1]× [0, 1]× [0, 1] ⊆ R3 which is obtained as follows. Usingn+ 1 parallel planes
in each of the three space dimensions we first subdivide� into n3 subcubes,

Q(i,j,k) = [
i−1
n
, i
n

] ×
[
j−1
n

,
j
n

]
× [

k−1
n

, k
n

]
, i, j, k = 1, . . . , n.

We letF [�]
(i,j,k), � = 1, . . . ,6, be the six square faces ofQ(i,j,k), where we use the following

ordering: left (�= 1), front (� = 2), bottom (�= 3), right (� = 4), back (�= 5), top
(� = 6). For i, j, k ∈ {1, . . . , n} each subcubeQ(i,j,k) is split into six square pyramids

P [�]
(i,j,k) by connecting its midpoint

v(i,j,k) =
(

2i−1
2n ,

2j−1
2n , 2k−1

2n

)

with the vertices of the faceF [�]
(i,j,k), � = 1, . . . ,6. Then, we insert both diagonals in each

of the facesF [�]
(i,j,k), denote their intersection point byw[�]

(i,j,k), and connectv(i,j,k) with
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Fig. 2. The uniform type-6 tetrahedral partition� is obtained by subdividing each subcubeQ(i,j,k) into 24
tetrahedra: firstQ(i,j,k) is split into six square pyramids, then each pyramid is split into four tetrahedra (left). The
intersections of� with certain planes parallel to the three unit planes are four-directional meshes (right)

w
[�]
(i,j,k), � = 1, . . . ,6. This further subdivides each pyramidP [�]

(i,j,k) into four tetrahedra,
and we obtain a tetrahedral partition�(i,j,k) of each subcubeQ(i,j,k) which consists of
24 tetrahedra. The construction is illustrated on the right of Fig.2. Finally, we define a
tetrahedral partition� of � as

� =
⋃

i,j,k ∈ {1,...,n}
�(i,j,k).

We call� atype-6 tetrahedral partition because for each subcubeQ(i,j,k) the subdivision
into the 24 tetrahedra described above is also obtained by slicingQ(i,j,k) with the six
planes which contain opposite edges ofQ(i,j,k). Alternatively, perhaps one could call�
a nine directional (three dimensional) mesh, because (essentially) three additional planes
are needed for fixing the cubes. In Carr et al.[8] the above construction is called aface-
centered 24-fold subdivision of the cubes. The intersection of� with any planePparallel
to one of the three unit planes (in distance�

n
to the origin) gives the four-directional mesh

(sometimes called a uniform�2 triangulation) of the intersecting square domainP ∩� (see
Fig. 2, right) and therefore the type-6 tetrahedral partition� is a natural generalization of
the four-directional mesh to the trivariate setting.

It is easy to see that for this uniform tetrahedral partition�, we have

T� = 24n3,

F� = 48n3 + 12n2,

E� = 29n3 + 18n2 + 3 n,

V� = 5 n3 + 6 n2 + 3 n + 1

(3.1)

for the number of tetrahedraT�, the number of triangular facesF�, the number of edges
E�, and the number of verticesV� of �, respectively. Hence, (2.2) and some elementary
computations imply that

dim S0
q (�) = (4q2 + 1) qn3 + 6 q2n2 + 3 qn + 1, q�1. (3.2)
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Table 1
Comparison of dimensions of splines on type-6 tetrahedral partitions for low degrees

q dimS1
q (�) dimS0

q (�) dimS−1
q (�)

1 4 5 n3 + 6 n2 + 3 n + 1 96n3

2 3n2 + 9 n + 4 34n3 + 24n2 + 6 n + 1 240n3

3 6n3 + 24n2 + 18n + 4 111n3 + 54n2 + 9 n + 1 480n3

4 39n3 + 66n2 + 27n + 4 260n3 + 96n2 + 12n + 1 840n3

5 120n3 + 132n2 + 36n + 4 505n3 + 150n2 + 15n + 1 1344n3

6 273n3 + 222n2 + 45n + 4 870n3 + 216n2 + 18n + 1 2016n3

7 522n3 + 336n2 + 54n + 4 1379n3 + 294n2 + 21n + 1 2880n3

8 891n3 + 474n2 + 63n + 4 2056n3 + 384n2 + 24n + 1 3960n3

9 1404n3 + 636n2 + 72n + 4 2925n3 + 486n2 + 27n + 1 5280n3

More complex arguments are needed to determine the degrees of freedom ofC1-smooth
splines. In Section 6, we prove the following main result on the dimension ofS1

q (�), q�2,
where� is a type-6 tetrahedral partition.

Theorem 3.1. The dimension ofS1
q (�) is given by

3 n2 + 9 n + 4, if q = 2 (3.3)

and

(4q3 − 24q2 + 53q− 45) n3 + 6 (2q2 − 7q + 7) n2 + 9 (q − 1) n+ 4,

if q�3. (3.4)

By using the result of Theorem3.1, we explicitly compute the dimensions of the spline
spacesS1

q (�), q ∈ {2, . . . ,9}, i.e. for low degrees, and compare these numbers with the
dimensions of the continuous and non-continuous spline spaces w.r.t.� (see Table1). We
observe (relatively) big differences for very smallq, while it is evident that these numbers
become asymptotically the same whenq increases.

In the following, we give some alternative formulae for the dimension of theC1-spline
spaces w.r.t.� where we use the terminologies from the previous section. To do this, we note
that for a type-6 tetrahedral partition� the number of interior verticesVI and the number
of boundary verticesVB, respectively, are given as follows

VI = 5 n3 − 6 n2 + 3 n − 1,

VB = 12n2 + 2.

The next corollary is obtained immediately from Theorem3.1and some elementary com-
putations by using (3.1) and the Euler type formulae (2.3).

Corollary 3.2. The dimension ofS1
q (�) is given by

1
8

(
7 T� − 2 F� − 8E� + 32V�

)
= 1

8

(
24VI + 14VB − 5 T� + 28

)
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= 1
8

(
9 FI + 47VI − 23EI + 79

)
,

if q = 2 (3.5)

and

1
12

(
(2q3 − 36q2 + 175q− 219) T� + 12 (q2 − 8q + 12) F�

+ 12 (3q − 7) E� + 48V�
)

= 1
12

(
36 (q − 1) VI + 12 (q2 − 2q + 2) VB

+(2q3 − 12q2 + 19q− 15) T� − 12 (2q2 − 7q + 3)
)

= 1
12

(
(2q3 − 5q + 9) FI + (2q3 + 12q2 + 7q − 3) VI

−(2q3 + 12q2 − 29q+ 33) EI + 2q3 + 12q2 + 7q + 45
)
,

if q�3. (3.6)

4. Domain points andC1-conditions on type-6 tetrahedral partitions

For proving our main result (Theorem3.1) we have to analyze the spline spacesS1
q (�),

whereq�2. This is done by constructing an appropriate MDSM (see Section 6) for the
splines on the partition� introduced in the previous section. By the nature of the problem the
choice of points inM is sometimes non-symmetric and hence we need a tool to conveniently
access individual domain points fromDq,� within the tetrahedra of the different cubes. In
this section, we develop such a tool. We introduce a terminology which allows us to describe
the setM for splines of arbitrary degrees (including the cases of quadratic, cubic and quartic
splines). In particular, we use this specific notation to rewrite the smoothness conditions
(2.4) for the splines on type-6 tetrahedral partitions� in a convenient form, such that the
subsequent proofs can be kept of moderate length. It generalizes a description of domain
points and smoothness conditions to the trivariate setting which was introduced in the
scattered data fitting method of Davydov and Zeilfelder[11] for bivariate splines on the
four-directional mesh.

For all i, j, k ∈ {1, . . . , n} we set for the ring with distancem ∈ {0, . . . , q} around the
midpointv(i,j,k) of Q(i,j,k),

Rm(v(i,j,k)) =
⋃

	∈{0,2m}

⋃

,�∈{0,...,2m}


+� even

⋃
�=1,2,3({

� ∈Dq,�(i,j,k)
: � = �m,[��(	,
,�)]

(i,j,k) = v(i,j,k) + ��(	,
,�)−(m,m,m)
2qn

})
,

(4.1)

where here and in the following we use the abbreviations

�1(a, b, c) := (a, b, c), �2(a, b, c) := (b, a, c), �3(a, b, c) := (b, c, a).
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The idea is to consider the 4q3 + 6 q2 + 4 q + 1 domain points fromDq,�(i,j,k)
in the cube

Q(i,j,k) as points which are organized on the boundary ofq +1 individual subcubes around

v(i,j,k) in Q(i,j,k). The indexm of � = �m,[��(	,
,�)]
(i,j,k) indicates the distancem of � to the

midpointv(i,j,k), and is associated with the boundary of themth subcube. Hence, the case
m = 0 degenerates to a subcube which exists of exactly one point, i.e. the pointv(i,j,k),
while the casem = q describes all the domain points which lie on the boundary ofQ(i,j,k),
which is theqth subcube. Moreover, there areq − 1 additional subcubes aroundv(i,j,k)
which are in between these two cases. The choice of	 and��, � = 1,2, 3, determines
on which square face of the boundary of the subcubes a point� is placed. More precisely,
	 = 0 and� = 1 means that the corresponding points lie on the left (boundary) square
face of the subcubes (i.e. in the pyramidP [1]

(i,j,k)), while 	 = 2m and� = 1 means that
the corresponding points lie on the right (boundary) square face of the subcubes (i.e. in the
pyramidP [4]

(i,j,k)). Similarly, the choice� = 2 describes points on the front (	 = 0) and

back (	 = 2m) faces of the subcubes (i.e. in the pyramidP [2]
(i,j,k) andP [5]

(i,j,k), respectively),
while � = 3 includes all the domain points on the bottom (	 = 0) and top (	 = 2m) faces
of the subcubes (i.e. in the pyramidP [3]

(i,j,k) andP [6]
(i,j,k), respectively).

We try to illustrate the introduced terminology in Fig.3, for the caseq = 3. In order
to draw the domain points on the boundary of each of the four subcubes simultaneously,
we first map the six boundary faces of each subcube into the plane as illustrated in the
top of Fig. 3 (here,[�] indicates the pyramids P[�](i,j,k)which intersect the corresponding
square face, the cube is unfolded so that the left square face, i.e.[�] = [1], is in the middle
of the cross, for instance). Then, we show the domain points on the boundary of the four
subcubes form = 0, 1,2, 3, where we draw the points by indicating� = �m,[��(	,
,�)]

(i,j,k)

with [��(	,
, �)]. In addition, we add the diagonals obtained from the subdivision of
the cubes into the 24 tetrahedra. By the nature of the above mapping some of the do-
main points appear more than once, and therefore we show the essential points using grey
boxes.

For later use, we call the domain points inside the square faceF [�]
(i,j,k) of Q(i,j,k), i.e. the

points� of the form� = �q,[��(0,
,�)]
(i,j,k) , 
, � ∈ {0, . . . ,2q}, 
+� even,points at a distance

zero of F [�]
(i,j,k), where� = 1,2, 3. In addition, we call the domain points which are on

the next layer away from the square faceF [�]
(i,j,k) of Q(i,j,k), i.e. the points� of the form

� = �q−1,[��(0,
,�)]
(i,j,k) , 
, � ∈ {0, . . . ,2(q − 1)}, 
 + � even, or� = �q,[��(1,
+1,�)]

(i,j,k) or

� = �q,[��(1,�,
+1)]
(i,j,k) , 
 ∈ {0, . . . ,2(q − 1)}, 
 even,� ∈ {0, 2q}, or � = �q,[��(2,
,�)]

(i,j,k) , 
 ∈
{0, 2q}, � ∈ {
, 2q−
}, points at a distance one of F [�]

(i,j,k), where� = 1,2, 3. In Fig.4,
again we consider the caseq = 3, use the above mapping, and show the domain points in
distance one and zero of the square facesF [�]

(i,j,k), � = 1,2, 3. Obviously, in this case these
points are on the rings Rm(v(i,j,k)), wherem ∈ {2, 3}. In this figure the domain points are
shown as dots (containing various symbols) and we indicate the essential points by using
grey boxes. The points at a distance zero and one ofF [1]

(i,j,k) are shown as grey dots, while

the points at a distance zero and one ofF [2]
(i,j,k) andF [3]

(i,j,k) are indicated by large circles
and crosses, respectively.
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[2]

[3]

[1]

[6]

[1][6]
[5]

[3]
[4]

[2]

[4]
[5]

[2,0,2] [2,0,0]

[1,0,1]

[0,0,2] [0,0,0][2,0,2]

[1,1,2]

[2,2,2] [0,2,2]

[0,1,1]

[0,2,0]

[1,1,0]

[2,0,0]

[2,2,0]

[2,1,1]

[2,2,2]

[2,0,2]

[1,2,1]

[2,2,2] [2,2,0]

[0,0,0]

m=1 :

m=0 :

[4,0,4] [2,0,4] [0,0,4]

[3,1,4] [1,1,4]

[4,2,4] [2,2,4][0,2,4]

[3,3,4] [1,3,4]

[4,4,4] [2,4,4] [0,4,4]

[0,0,2] [0,0,0]

[0,1,3] [0,1,1]

[0,2,2] [0,2,0]

[0,3,3] [0,3,1]

[0,4,2] [0,4,0]

[2,0,0] [4,0,0]

[1,1,0] [3,1,0]

[2,2,0] [4,2,0]

[1,3,0] [3,3,0]

[2,4,0] [4,4,0]

[4,0,2] [4,0,4]

[4,1,1] [4,1,3]

[4,2,2] [4,2,4]

[4,3,1] [4,3,3]

[4,4,2] [4,4,4]

[1,0,3] [1,0,1]

[2,0,4] [2,0,2][2,0,0]

[3,0,3] [3,0,1]

[4,0,4] [4,0,2] [4,0,0]

[1,4,3] [1,4,1]

[2,4,4] [2,4,2] [2,4,0]

[3,4,3] [3,4,1]

[4,4,4] [4,4,2] [4,4,0]

m=2 :

m=3 :

[6,0,6] [4,0,6] [2,0,6] [0,0,6]

[5,1,6] [3,1,6] [1,1,6]

[6,2,6] [4,2,6] [2,2,6] [0,2,6]

[5,3,6] [3,3,6] [1,3,6]

[6,4,6] [4,4,6] [2,4,6] [0,4,6]

[5,5,6] [3,5,6] [1,5,6]

[6,6,6] [4,6,6] [2,6,6] [0,6,6]

[0,0,4] [0,0,2] [0,0,0]

[0,1,5] [0,1,3][0,1,1]
[0,2,4] [0,2,2] [0,2,0]

[0,3,5] [0,3,3] [0,3,1]

[0,4,4] [0,4,2] [0,4,0][0,4,0]

[0,5,5] [0,5,3] [0,5,1]

[0,6,4] [0,6,2] [0,6,0]

[1,6,5] [1,6,3] [1,6,1]

[2,6,6] [2,6,4] [2,6,2] [2,6,0]

[3,6,5] [3,6,3] [3,6,1]

[4,6,6] [4,6,4] [4,6,2] [4,6,0]

[5,6,5] [5,6,3] [5,6,1]

[6,6,6] [6,6,4] [6,6,2] [6,6,0]

[1,0,5] [1,0,3] [1,0,1]

[2,0,6] [2,0,4] [2,0,2] [2,0,0]

[3,0,5] [3,0,3] [3,0,1]

[4,0,6] [4,0,4] [4,0,2] [4,0,0]

[5,0,5] [5,0,3] [5,0,1]

[6,0,6] [6,0,4] [6,0,2] [6,0,0]

[2,0,0] [4,0,0] [6,0,0]

[1,1,0] [3,1,0] [5,1,0]

[2,2,0] [4,2,0] [6,2,0]

[1,3,0] [3,3,0] [5,3,0]

[2,4,0] [4,4,0] [6,4,0]

[1,5,0] [3,5,0] [5,5,0]

[4,6,0] [6,6,0]

[6,0,2] [6,0,4] [6,0,6]

[6,1,1] [6,1,3] [6,1,5]

[6,2,2] [6,2,4] [6,2,6]

[6,3,1] [6,3,3] [6,3,5]

[6,4,2] [6,4,4] [6,4,6]

[6,5,1] [6,5,3] [6,5,5]

[6,6,2] [6,6,4] [6,6,6][2,6,0]

Fig. 3. Indexing the domain points within a cubeQ(i,j,k) for q = 3. The boundary faces of the four subcubes,
i.e. the ringsRm(v(i,j,k)), contain 1,14, 50, and 110 domain points form = 0, 1,2, 3, respectively. These points
are indicated by showing their index[��(	,
, �)]

In the following, we seta� = a
m,[��(	,
,�)]
(i,j,k) , if � = �m,[��(	,
,�)]

(i,j,k) , for the coefficients

a� = a�(s), � ∈ Dq,�, of a splines ∈ S1
q (�), q�2, on a type-6 tetrahedral partition�,

and we proceed by rewriting the (remaining) continuity and smoothness conditions (2.4)
for the spline spaces. Fori, j, k ∈ {1, . . . , n}, the continuity ofson the common triangles
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Fig. 4. The sets of domain points at a distance one (left) and zero (right) of the left, front and bottom faces of a
cube in the caseq = 3

of the facesF [1]
(i,j,k) andF [4]

(i−1,j,k), i �= 1, F [2]
(i,j,k) andF [5]

(i,j−1,k), j �= 1, andF [3]
(i,j,k) and

F [6]
(i,j,k−1), k �= 1, respectively, implies that

a = a�, (4.2)

where

 = �q,[��(2q,
,�)]
(i,j,k)−e�

and� = �q,[��(0,
,�)]
(i,j,k) , (4.3)


, � ∈ {0, . . . ,2q}, 
 + � even,� ∈ {1,2, 3}, ande� = (��,�)�=1,2,3. For i, j, k ∈
{1, . . . , n}, theC1-smoothness conditions ofsacross the common triangular faces ofF [1]

(i,j,k)

andF [4]
(i−1,j,k), i �= 1, F [2]

(i,j,k) andF [5]
(i,j−1,k), j �= 1, andF [3]

(i,j,k) andF [6]
(i,j,k−1), k �= 1, re-

spectively, are given as

a = 1
2 (a� + a�), (4.4)

where

 = �q,[��(0,
,�)]
(i,j,k) , � = �q−1,[��(0,
−1,�−1)]

(i,j,k) , and� = �q−1,[��(2q−2,
−1,�−1)]
(i,j,k)−e�

, (4.5)


, � ∈ {1, . . . ,2q − 1}, 
 + � even, and� ∈ {1,2, 3}. We observe that theC1-smoothness
conditions ofsacross the common triangular faces of the four tetrahedra inside each pyra-
mid P [�]

(i,j,k), � = 1, . . . ,6, are given by the same Eq. (4.4). More precisely, fori, j, k ∈
{1, . . . , n}, (4.4) holds for all,�, and� of the form

 = �m,[��(	,
,
)]
(i,j,k) , � = �m,[��(	,
−1,
+1)]

(i,j,k) , and� = �m,[��(	,
+1,
−1)]
(i,j,k)

and

 = �m,[��(	,
,2m−
)]
(i,j,k) , � = �m,[��(	,
−1,2m−
−1)]

(i,j,k) , and

� = �m,[��(	,
+1,2m−
+1)]
(i,j,k) , (4.6)
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respectively, where	 ∈ {0, 2m}, 
 ∈ {1, . . . ,2m − 1}, m = 1, . . . , q, and� ∈ {1,2, 3}.
TheC1-smoothness conditions (4.5) and (4.6) of sare illustrated in Fig.1 (left) by showing
the case of cubic splines (i.e.q = 3), where we symbolize the domain points associated
with the involved Bernstein–Bézier coefficients by grey dots, while others are shown as
white dots. For fixedm ∈ {1, . . . , q} the conditions described by (4.4), where,�, �
are as in (4.6), involve Bernstein–Bézier coefficients where the associated domain points
are on the ringRm(v(i,j,k)), only. Obviously, these conditions are of univariate type. In
addition, for the partition� there areC1-smoothness conditions involving Bernstein–Bézier
coefficients associated with domain points on the ringsRm(v(i,j,k)) andRm−1(v(i,j,k)),
simultaneously. These are theC1-smoothness conditions ofsacross the common triangular

faces of tetrahedra contained in different pyramids P[�]
(i,j,k), P [�′]

(i,j,k), � �= �′, of the same
cubeQi,j,k. These (non-degenerate) conditions involve five coefficients and are illustrated in
Fig.1 (right)—again this figure deals with the case of cubics, the involved Bernstein–Bézier
coefficients are shown as grey dots, and the others are shown as white dots.

Fori, j, k ∈ {1, . . . , n}, theC1-smoothness conditions ofsacross the common triangular
faces of different pyramids inQi,j,k are of the form

a = (a� + a�) − 1
2(a� + a�), (4.7)

where,�, �, � and� are given as

 = �m−1,[��(
,0,0)]
(i,j,k) , � = �m,[��(
+1,1,0)]

(i,j,k) , � = �m,[��(
+1,0,1)]
(i,j,k) ,

� = �m,[��(
,0,0)]
(i,j,k) , and� = �m,[��(
+2,0,0)]

(i,j,k) ,

 = �m−1,[��(
,2(m−1),0)]
(i,j,k) , � = �m,[��(
+1,2m,1)]

(i,j,k) , � = �m,[��(
+1,2m−1,0)]
(i,j,k) ,

� = �m,[��(
,2m,0)]
(i,j,k) , and� = �m,[��(
+2,2m,0)]

(i,j,k) ,

 = �m−1,[��(
,0,2(m−1))]
(i,j,k) , � = �m,[��(
+1,1,2m)]

(i,j,k) , � = �m,[��(
+1,0,2m−1)]
(i,j,k) ,

� = �m,[��(
,0,2m)]
(i,j,k) , and� = �m,[��(
+2,0,2m)]

(i,j,k)

and

 = �m−1,[��(
,2(m−1),2(m−1)]
(i,j,k) , � = �m,[��(
+1,2m,2m−1)]

(i,j,k) ,

� = �m,[��(
+1,2m−1,2m)]
(i,j,k) ,

� = �m,[��(
,2m,2m)]
(i,j,k) , and� = �m,[��(
+2,2m,2m)]

(i,j,k) , (4.8)

respectively, where
 ∈ {0, . . . ,2(m − 1)}, 
 even,m = 1, . . . , q, and� ∈ {1,2, 3}.

5. Minimal determining sets for C1-splines on a tetrahedral cell

We consider the spacesS1
q (�(1,1,1)), q�2, where�(1,1,1) is obtained from subdividing

the cubeQ := Q(1,1,1) into 24 tetrahedra. This is the casen = 1 in Section 3 and�(1,1,1)
is a tetrahedral cell with one interior vertexv := v(1,1,1). This can be considered as the
starting point of our inductive method for proving our main result (Theorem3.1) which
is presented in Section 6. In the following, we give two different MDS for the spaces
S1
q (�(1,1,1)), q�2, which we denote bỹMQ andMQ, respectively. The choice of points
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in the first setM̃Q is quite symmetric, and the basic idea here is, roughly speaking, that

we choose points�m,[��(	,
,�)] := �m,[��(	,
,�)]
(1,1,1) on the ringsRm(v) by working from the

interior to the boundary ofQ, i.e. we consider the ringsRm(v) in the orderm = 1, . . . , q.
Computing the cardinality of̃MQ, we determine the dimension ofS1

q (�(1,1,1)), q�2. The

second MDSMQ for S1
q (�(1,1,1)), q�2, is more complex thañMQ since it possesses

fewer symmetries. The below proof (of Theorem5.3) shows that for this set different
arguments are necessary. In this case, our inductive proof works from the boundary of three
square faces ofQ to the interior, and then—using induction again—from the interior to the
boundary of the three remaining faces ofQ. We take advantage of the fact that at this point
it is sufficient to show thatMQ is a DS. Moreover, on the other hand,MQ is chosen such
that it allows us to deal withC1-splines, where the values as well as its first derivatives are
already determined across certain square faces at the boundary ofQ, and therefore we need
MQ for the construction of the MDSM for the whole spline spacesS1

q (�), q�2. In fact,
the setMQ is the key to building up the construction for the whole space which we present
in Section 6. Note that both MDS give some insight into the structure of the trivariate spline
spaces.

In the following, we definẽMQ ⊆ Dq,�(1,1,1). To do this, we need some auxiliary sets
which we denote byD, �m(v), and�m(v), m = 2, . . . , q. First,D ⊆ R1(v) is a simple
set which determines the points from the disk with radius 1 aroundv. We set

D := {�1,[0,0,0]} ∪ {�1,[��(2,0,0)], � = 1,2, 3}. (5.1)

Hence,D contains the points which are shown as black dots for the casem = 1 in Fig.5.
In this figure, we use the same mapping for the different rings as in the top of Fig.3. Again,
we show the caseq = 3, here, and since some of the domain points appear more than once,
we indicate the essential points by using grey boxes. Form ∈ {2, . . . , q}, we set

�m(v) :=
⋃

	∈{0,2m}

⋃

∈{0,...,2m}
�∈{
,2m−
}

⋃
�=1,2,3

{�m,[��(	,
,�)]}.

These sets describe the points on the diagonals of the boundary of the subcubes (see previous
section) associated with the ringsRm(v), m = 2, . . . , q. In Fig. 5, we show them as grey
dots (in the cases m= 2 and 3). Moreover, we let�2(v) := ∅ and form ∈ {3, . . . , q}, we
set

�m(v) :=
⋃

	∈{2,...,2(m−1)−2}
	 even

⋃

∈{0,2m−1}
�∈{
,2m−
}

⋃
�=1,2,3

{�m,[��(	+1,
+1,�)]}.

These sets describe certain points being at a distance one to some of the interior triangular
faces of�(1,1,1) with two vertices ofQ. To describe this differently, one can say that these
points are on the boundary of certain subcubes (see previous section) associated with the
ringsRm(v), m = 3, . . . , q, and close to the edges of these subcubes. In Fig.5, we show
them as white dots (in the casem = 3).

Roughly speaking, the set̃MQ is now essentially defined by removing the points on the
four interior triangular faces of each pyramid inQ (grey dots in Fig.5) and certain points
which lie at a distance one to the remaining interior triangular faces ofQ (white dots in
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m=1 :
m=2 :

m=3 :

Fig. 5. The choice of points for̃MQ in the caseq = 3. The figure shows the ringsRm(v), m = 1 (top, left),
m = 2 (top,right), andm = 3 (bottom), where the points iñMQ are marked by black dots

Fig.5), and adding the points fromD. In the example of Fig.5,M̃Q consists of all the points
shown as black dots surrounded by grey boxes. Here, we haveq = 3 and the cardinality of
M̃Q is equal to 4+ 12+ 36 = 52. More precisely, we define

M̃Q := D ∪
q⋃

m=2

(
Rm(v)\(�m(v) ∪ �m(v))

)
. (5.2)

Theorem 5.1. The setM̃Q is a minimal determining set forS1
q (�(1,1,1)), q�2.

Proof. Let arbitrary coefficientsa� = a�(s), � ∈ M̃Q, of a splines ∈ S1
q (�(1,1,1)),

q�2, be given. We have to show that all coefficients ofs, i.e. the coefficientsa�, where
� ∈ Dq,�(1,1,1) = Dq(v), are uniquely determined, while all theC1-smoothness conditions
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(b+d)/2

(b+c)/2(c+d)/2 −a+d+(b+c)/2
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 −a+b+d

 −2a+b+c+d

 −a+b+d

−2a+b+c+d  −a+b+c

 −a+c+(b+d)/2

 −a+b+c  −2a+b+c+d

 −a+b+(c+d)/2

 −a+b+d

Fig. 6. Computation of coefficients associated with points inR1(v)

of the form (4.4), where,�, and� are as in (4.6), and (4.7), where,�, �, �, and� are as
in (4.8), are satisfied.

First let us note, that the choice ofD uniquely determines all the coefficients associated
with points in the diskD1(v). This easily follows from some elementary computations
using the 24C1-smoothness conditions involving the coefficients associated with points
from that disk, only. The results of these computations are illustrated in Fig.6, where
we seta := a�, � = �1,[0,0,0], b := a�, � = �1,[2,0,0], c := a�, � = �1,[0,2,0], and
d := a�, � = �1,[0,0,2], and compute the remaining coefficients fromR1(v). In addition,
we havea� = (−a + b + c + d)/2, if � = �0,[0,0,0].

We now claim that the coefficientsa�, � ∈ Dm(v), are uniquely determined form ∈
{2, . . . , q}. To show this we use induction.

The casem = 2 differs somewhat from the remaining cases, and therefore we first
consider this case. Here, we have to show that the coefficientsa�, � ∈ R2(v), are uniquely

determined. Since the points�2,[��(2,
,�)], 
, � ∈ {0, 4}, � = 1,2, 3,are contained iñMQ,
it follows from a standard argument known from bivariate spline theory (cf.[27]) involving
theC1-smoothness conditions of the form (4.4), where,�, and� are as in (4.6) andm = 2,
thata� is uniquely determined if� ∈ �2(v)\{�2,[	,
,�] : 	,
, � ∈ {0, 4}}. As we have seen
above, the coefficients ofsassociated with points fromD1(v) are uniquely determined, and
hence we can now apply theC1-smoothness conditions of the form (4.7), where,�, �, �,
and� is as in (4.8) andm = 2, which determine the remaining coefficients onR2(v), i.e. the
coefficientsa�, where� = �2,[	,
,�], 	,
, � ∈ {0, 4}. Any of these coefficientsa� (which
correspond to one of the eight corners of the subcube associated withR2(v)) is involved in
threeC1-smoothness conditions of the latter form, but we observe that independent of which
condition is chosen the value ofa� is always the same. Hence,a� is uniquely determined. For
instance, we computea�2,[0,0,0] = a�2,[2,0,0] + a�2,[0,2,0] + a�2,[0,0,2] − 2 a�1,[0,0,0] . We conclude

that the coefficientsa�, � ∈ D2(v) are uniquely determined.
Let us assume that we have already shown that the coefficientsa�, � ∈ Dm−1(v), where

m ∈ {3, . . . , q} are uniquely determined. We now prove that the coefficientsa�, � ∈ Rm(v)

are uniquely determined. To do this, let us note first that it is obvious that all the points in the
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Table 2
Comparison of dimensions of splines on the tetrahedral cell�(1,1,1)

q dim S1
q (�(1,1,1)) dim S0

q (�(1,1,1)) dim S−1
q (�(1,1,1))

1 4 14 96
2 16 65 240
3 52 175 480
4 136 369 840
5 292 671 1344
6 548 1105 2016
7 916 1695 2880
8 1432 2465 3960
9 2116 3439 5280

interior of the edges of the subcubes associated with the ringRm(v) are contained iñMQ.
Moreover, we have�m,[��(	+1,
,�)] ∈ M̃Q, where	 ∈ {2, . . . ,2(m− 1)− 2}, 	 even,
 ∈
{0, 2m−1},� ∈ {
+1,2m−1−
}, � = 1,2, 3. (For the casem = 3, these are the black dots
in the interior of the triangles shown in Fig.5.) From the induction hypothesis, we know that
the coefficients associated with the domain points inRm−1(v) are uniquely determined, and
therefore it follows from (4.7), where,�, �, �, and� are as in (4.8) and
 ∈ {2, . . . ,2(m−
1)−2},
 even, that the coefficientsa�, � ∈ �m(v), are uniquely determined. Moreover, the
remaining points in the interior of the triangles on the square faces of the subcubes associated
with the ringRm(v) are contained iñMQ, and hence theC1-smoothness conditions (4.4),
where,�, and � are as in (4.6) and	 ∈ {0, 2m}, 
 ∈ {1, . . . ,2m − 1}, imply that
a� is uniquely determined if� ∈ �m(v)\{�m,[	,
,�] : 	,
, � ∈ {0, 2m}}. In particular,
by using the argument from the bivariate theory mentioned above, the coefficientsa�,

where� = �m,[��(	,m,m)], 	 ∈ {0, 2m}, � = 1,2, 3, are uniquely determined. Any of
the coefficientsa�, � = �m,[	,
,�], 	,
, � ∈ {0, 2m} (which correspond to one of the
eight corners of the subcube associated withRm(v)) is involved in threeC1-smoothness
conditions which we have not used, yet, i.e. conditions of the form (4.7), where,�, �, �,
and� are as in (4.8) and
 ∈ {0, 2(m − 1)}. By the induction hypothesis, the coefficients
a�, where� = �m−1,[	,
,�], 	,
, � ∈ {0, 2(m − 1)} are already uniquely determined, and
therefore the same argument as in the casem = 2 shows that the coefficientsa�, � =
�m,[	,
,�], 	,
, � ∈ {0, 2m} are uniquely determined. We conclude that the coefficients
a�, � ∈ Rm(v) and hence the coefficientsa�, � ∈ Dm(v) are uniquely determined.

The proof of the theorem is complete. �
The next result is obtained by counting the number of points in the minimal determining

setM̃Q for S1
q (�(1,1,1)), q�2, defined in (5.2). In Table2 we compare the dimension of

these spaces with the dimensions of continuous and non-continuous splines on the same
tetrahedral cell�(1,1,1).

Theorem 5.2. The dimension ofS1
q (�(1,1,1)), q�2, is given by4 (q3 − 3q2 + 5q − 2).

Proof. Let us denote bydm the number of points inDm(v) ∩ M̃Q, m = 2, . . . , q. A
simple count shows that there arem−1 points fromM̃Q on each of the twelve edges of the
subcubes associated withRm(v). Moreover, twelve triangles on the square faces of these
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m=2 :

x x x

x

x

x

x

x x

m=3 :

Fig. 7. The choice of points forMQ in the caseq = 3. The figure shows the ringsR2(v) (left) andR3(v) (right),

where the points ofMQ are marked by black dots. These are all the points ofMQ, sinceD1(v) ∩ MQ = ∅

m=q=2 :

Fig. 8. The choice of points forMQ in the caseq = 2. The figure shows the ringR2(v), where the points of

MQ are marked by black dots. These are all the points ofMQ, sinceD1(v) ∩ MQ = ∅

subcubes contain
(
m−2

2

)
points fromM̃Q in their interior, and the remaining twelve of these

triangles containm − 2 + (
m−2

2

)
points fromM̃Q in their interior. Hence, it follows that

the setRm(v) ∩ M̃Q contains exactly 12(m − 1) + 12 (m − 2) + 24
(
m−2

2

)
points for

m ∈ {2, . . . , q}. Therefore, the recurrence relation

dm = dm−1 + 24m − 36+ 24
(
m−2

2

)
(5.3)

is satisfied form ∈ {3, . . . , q}. Sinced2 = 16, it follows from induction and some elemen-
tary computations thatdq = 4 (q3 − 3q2 + 5q − 2), q�2. Sincedq = #(M̃Q), the proof
of the theorem is complete. �
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We proceed by defining another subsetMQ ⊆ Dq,�(1,1,1), which is also a MDS for

S1
q (�(1,1,1)), q�2, but different fromM̃Q. To do this, again we need some auxiliary sets

which we denote by�m(v),�m(v),Υ m(v), and�m(v), m = 2, . . . , q. Form∈ {2, . . . , q},
we set

�m(v) :=
⋃

	∈{0,2m}

⋃

∈{1,...,2m−1}
�∈{
,2m−
}

⋃
�=1,2,3

{�m,[��(	,
,�)]}

and

�m(v) :={�m,[2m,2m,2m]} ∪ {�m,[��(2,2m,2m)], � = 1,2, 3}.
The set�m(v) is similar to the set�m(v), but different. The difference is that the points
at the eight corners of the subcubes (see previous section) associated with the ringRm(v)

are not contained in�m(v). In Figs.7 and8 the points from�m(v) are show as grey dots.
Here, we use the above mapping for the rings again (see top of Fig.3), indicate the essential
domain points by grey boxes, and show the casesq = 3 (andm ∈ {2, 3}) andq = 2
(andm = 2), respectively. Moreover, the points of�m(v) are marked as white dots which
contain a small black dot. In addition, we letΥ 2(v) = ∅ and form ∈ {3, . . . , q}, we set

Υ m(v) :=
⋃

	∈{2,...,2(m−1)−2}
	 even

⋃
�=1,2,3

{�m,[��(	+1,1,2m)], �m,[��(	+1,2m,1)],

�m,[��(	+1,2m,2m−1)]}.
The setΥ m(v) is similar to�m(v), but different. Again, these sets describe certain points
being at a distance one to some of the interior triangular faces of�(1,1,1) with two vertices
of Q. In Fig.7, we show the points fromΥ m(v) as white dots—in this case we havem = 3,
andΥ 3(v) consists of nine points. Moreover, we let form ∈ {2, . . . , q − 1},

�m(v) :=
⋃

	∈{0,...,2m}
	 even

⋃
�=1,2,3

{�m,[��(	,0,0)]},

and set�q(v) = ∅. The sets�m(v) describe domain points (outside ofD1(v)) on the
interior triangular faces of�(1,1,1) with vertex(0, 0, 0), which do not lie on the boundary
of Q. In Fig.7, we mark the points of the set�m(v) (wherem = 2) with a cross. Note that
for q = 2 there is only one set of the form�m(v), and this set is empty, while forq�3
there areq − 2 non-empty sets of the form�m(v).

Roughly speaking, the setMQ is now defined by removing the points from the above
sets fromDq,�(1,1,1)\D1(v). Figs.7 and8 illustrate the casesq = 3 and 2, respectively. In
these figures,MQ consists of all the points shown as black dots surrounded by grey boxes.
For q = 3 the number of these dots is 9+ 43 = 52, while forq = 2 this number is 16.
More precisely, we define

MQ :=
q⋃

m=2

(
Rm(v)\(�m(v) ∪ �m(v) ∪ Υ m(v) ∪ �m(v))

)
. (5.4)
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Theorem 5.3. The setMQ is a minimal determining set forS1
q (�(1,1,1)), q�2.

Proof. It suffices to show thatMQ is a DS forS1
q (�(1,1,1)), while the number of points in

MQ coincides with the dimension ofS1
q (�(1,1,1)), q�2.

We first show that the cardinality of #(MQ) denoted bycq coincides with the number
given in Theorem5.2, i.e. we have to show thatcq = 4 (q3 − 3q2 + 5q− 2), q�2. This is
certainly true forq = 2, since in this case, the setMQ = R2(v)\(�2(v)∪�2(v)) contains
16 points, i.e.c2 = 16. (See Fig.8, where the points fromMQ are marked as black dots
surrounded by grey boxes.) Moreover, the choice of points inMQ implies that forq�3,

cq =
(
cq−1 − #(�q−1(v))

)
+ #

(
Rq(v) ∩ MQ

)

=
(
cq−1 − (3 q − 2)

)
+

(
(12q − 4) − 4 + 15 (q − 2) + 24

(
q−2

2

))
= cq−1 + 24q − 36+ 24

(
q−2

2

)
.

A comparison of this recursion with (5.3) now shows thatcq is the number we claimed.
It remains to show thatMQ is a DS forS1

q (�(1,1,1)), q�2, i.e. we have to show
that for any splines ∈ S1

q (�(1,1,1)) with a� = a�(s) = 0, � ∈ MQ, it follows from
the C1-smoothness conditions of the form (4.4), where,�, and � are as in (4.6), and
(4.7), where,�, �, �, and� are as in (4.8), thats ≡ 0. We prove this claim by induction
onq.

First, we consider the caseq = 2. Lets ∈ S1
2(�(1,1,1)) be given such thata� = 0, where

� ∈ MQ, i.e. � ∈ R2(v)\(�2(v) ∪ �2(v)). Hence,a� = 0, if � = �2,[��(0,
,�)], where

, � ∈ {0, . . . ,4}, 
, � even,(
, �) �= (2, 2), � = 1,2, 3. It follows from the smoothness
conditions of form (4.4), where, �, and� are as in (4.6) and	 = 0, m = 2, thata� = 0

if � = �2,[��(0,
,�)], 
, � ∈ {1,3}, � = 1,2, 3, anda� = 0 if � = �2,[��(0,2,2)], � = 1,2, 3.

Moreover, we havea�(s) = 0 if � = �2,[��(4,1,1)], � = 1,2, 3. By using theC1-smoothness

conditions of form (4.7), where = �1,[��(
,0,0)], �, �, �, and� are as in (4.8) andm = 2,
we obtain thata� = 0, � ∈ D, whereD is the set defined in (5.1). Therefore, it follows from
the arguments given in the beginning of the proof of Theorem5.1thata� = 0, � ∈ D1(v).
By using some of the conditions of form (4.7), where, �, �, �, and� are as in (4.8)
andm = 2, we geta� = 0, if � = �2,[��(1,3,4)] or � = �2,[��(1,4,3)], � = 1,2, 3. Now,
some of the conditions of form (4.4) where, �, and� are as in (4.6) and	 = 4, m = 2,
imply a� = 0, if � = �2,[��(4,2,2)], � = 1,2, 3, and hence,a� = 0 if � = �2,[��(2,4,4)]

or � = �2,[��(4,3,3)], � = 1,2, 3. It follows from the remaining threeC1-smoothness
conditions of form (4.7), i.e. = �1,(2,2,2) in (4.8), thata� = 0, if � = �2,[4,4,4], and hence
s ≡ 0.

Let us assume that we have already shown that the above claim holds true forq − 1, and
let a splines ∈ S1

q (�(1,1,1)), q�3, be given which satisfiesa�(s) = 0, � ∈ MQ. Then, it
follows from the conditions of form (4.4), where, �, and� are as in (4.6) and	 = 0, m =
q, thata�(s) = 0, if � = �q,[��(0,
,�)], 
 ∈ {1, . . . ,2q − 1}, � ∈ {
, 2q − 
}, � = 1,2, 3.

Moreover, we havea� = 0 if � = �q,[��(2q,1,1)], � = 1,2, 3. By using theC1-smoothness

conditions of form (4.7), where = �m−1,[��(
,0,0)], �, �, �, and� are as in (4.8) and
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m = q, we obtain thata� = 0, � ∈ �q−1(v). Therefore, it follows from the choice of
points inMQ and the induction hypothesis thata� = 0, � ∈ Dq−1(v). By using some
of the conditions of form (4.7), where, �, �, �, and� are as in (4.8) andm = q, we
get a� = 0, if � = �q,[��(	+1,1,2q)] or � = �q,[��(	+1,2q,1)], 	 ∈ {2, . . . ,2(q − 1)}, 	
even,� = 1,2, 3. Note that most of these points are contained inΥ q(v). Now, three of
the conditions of form (4.4) where, �, and� are as in (4.6) and	 = 2q, m = q, imply
a� = 0, if � ∈ �q(v)\{�q,[2q,2q,2q]}. The choice ofMQ and theC1-smoothness conditions

of form (4.7), where = �q−1,[�(
,2q−2,2q−2)], �, �, �, and� are as in (4.8) andm = q,
imply that the remaining coefficients associated with points fromΥ q(v) do vanish, i.e. we
havea� = 0 if � = �q,[��(	+1,2q,2q−1)], 	 ∈ {2, . . . ,2(q − 1)− 2}, 	 even,� = 1,2, 3.

Moreover,a� = 0 if � = �q,[��(2q,2q−1,2q−1)], � = 1,2, 3. Therefore, the choice of points
in MQ and the smoothness conditions of form (4.4) where, �, and� are as in (4.6) and
	 = 2q, m = q, imply a� = 0, if � = �q,[��(2q,
,�)], 
 ∈ {1, . . . ,2q−1}, � ∈ {
, 2q−
}.
Moreover,a� = 0 if � = �q,[��(2q,2q−1,2q−1)], � = 1,2, 3. Note that now it can be seen
that all the coefficients associated with points from the set�q(v) vanish. It follows from the
remaining threeC1-smoothness conditions of form (4.7), i.e. = �q−1,[2(q−1),2(q−1),2(q−1)]
in (4.8), thata� = 0, if � = �q,[2q,2q,2q], and hences ≡ 0.

This completes the proof of the theorem.�

6. A minimal determining set for S1q(�), proof of main results

We construct a MDSM for S1
q (�), q�2, where� is a type-6 tetrahedral partition as

in Section 3. To do this, we use the results from the previous section. In particular, we use
thatMQ is a MDS forS1

q (�(1,1,1)), q�2—a close inspection of the proof of Theorem3.1
given below shows that this set is in fact needed for three of the four cases which appear in
this inductive proof. Counting the number of points inM, we establish the explicit formulae
for the dimension given in Theorem3.1. Note that the construction ofM gives some insight
into the structure of the trivariate spline spaces.

In the following, we defineM. To do this, we need some auxiliary sets. First, we let
Q = Q(1,1,1) again,MQ as in (5.4), and set fori, j, k ∈ {1, . . . , n}

M(i,j,k) := {� ∈ Dq,�(i,j,k)
: � −

(
i−1
n
,
j−1
n

, k−1
n

)
∈ MQ}. (6.1)

Hence,M(i,j,k) is a “shifted” version of the MDSMQ for S1
q (�(1,1,1)) from the pre-

vious section. Obviously, we haveM(1,1,1) = MQ. Moreover, we letA(i,j,k), i =
2, . . . , n, j, k = 1, . . . , n, be the set of domain points fromDq,�(i,j,k)

which are at a

distance zero or one to the left square faceF [1]
(i,j,k) of Q(i,j,k), B(i,j,k), j = 2, . . . , n, i, k =

1, . . . , n, the set of domain points fromDq,�(i,j,k)
which are at a distance zero or one to the

front square faceF [2]
(i,j,k) of Q(i,j,k), andC(i,j,k), k = 2, . . . , n, i, j = 1, . . . , n, the set

of domain points fromDq,�(i,j,k)
which are at a distance zero or one to the bottom square

faceF [3]
(i,j,k) of Q(i,j,k). It is not difficult to see that the setA(i,j,k) contains all the points

from Dq,�(i,j,k)
where the associated Bernstein–Bézier coefficients are influenced by the
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C1-continuity across the faceF [1]
(i,j,k). Similarly, the setsB(i,j,k) andC(i,j,k), respectively,

contain all the points fromDq,�(i,j,k)
where the associated Bernstein–Bézier coefficients

are influenced by theC1-continuity across the facesF [2]
(i,j,k) andF [3]

(i,j,k), respectively. For
the caseq = 3, the setsA(i,j,k), B(i,j,k), andC(i,j,k), are illustrated in Fig.4, where the
points fromA(i,j,k), B(i,j,k), andC(i,j,k) are marked as grey dots, large circles and crosses,
respectively.

Roughly speaking, the setM is now defined by choosing the points from the shifted
versionsM(i,j,k) of MQ, and removing those points of these sets which are at a distance
zero and one of some of the square faces ofQ(i,j,k). Depending oni, j, k there are one, two
or three square faces for which the points are removed. More precisely, we define

M := M(1,1,1)

∪
⋃

i∈{2,...,n}

(
(M(i,1,1)\A(i,1,1)) ∪ (M(1,i,1)\B(1,i,1))

∪ (M(1,1,i)\C(1,1,i))
)

∪
⋃

i,j∈{2,...,n}

(
(M(i,j,1)\(A(i,j,1) ∪ B(i,j,1))) ∪ (M(i,1,j)\(A(i,1,j)

∪ C(i,1,j))) ∪ (M(1,i,j)\(B(1,i,j) ∪ C(1,i,j)))
)

∪
⋃

i,j,k∈{2,...,n}

(
(M(i,j,k)\(A(i,j,k) ∪ B(i,j,k) ∪ C(i,j,k))

)
.

(6.2)

Theorem 6.1. The setM is a minimal determining set forS1
q (�), q�2.

Proof. Let arbitrary coefficientsa� = a�(s), � ∈ M, of a splines ∈ S1
q (�), q�2, be

given. We have to show that all coefficients ofs, i.e. the coefficientsa�, where� ∈ Dq,�,
are uniquely determined, while all theC1-smoothness conditions of form (4.4), where
,�, and� are as in (4.5) or (4.6), and (4.7), where,�, �, �, and� are as in (4.8), are
satisfied.

Our method of proof is to show inductively that the coefficients a�, � ∈ Dq,�(i,j,k)
=

Dq,� ∩ Q(i,j,k) are uniquely determined fori, j, k ∈ {1, . . . , n}, where we consider the
cubesQ(i,j,k) in an appropriate order. This natural order is as follows. First, we con-
sider the cases(i, j, k) = (i, 1,1), i = 1, . . . , n. Then, we consider the cases(i, j, k) =
(1, j,1), j = 2, . . . , n, and(i, j, k) = (1,1, k), k = 2, . . . , n. Here, we use the result of
Theorem5.3and we have to take theC1-continuity across exactly one square face of the cube
into account. We proceed by considering the cases(i, j, k) = (i, j, 1), i, j = 2, . . . , n,
(i, j, k) = (i, 1, k), i, k = 2, . . . , n, and(i, j, k) = (1, j, k), j, k = 2, . . . , n. Again,
we use Theorem5.3but now we have to take theC1-continuity across exactly two square
face of the cube (which have a common edge) into account. Finally, we consider the cases
(i, j, k), i, j, k = 2, . . . , n. This is the most difficult case. We can use Theorem5.3again
and have to take theC1-continuity across exactly three square faces of the cube (which have
a common point) into account.
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First, it follows from Theorem5.3 andM(1,1,1) = MQ ⊆ M that the coefficients
a�, where� ∈ Dq,�(1,1,1) = Q(1,1,1) ∩ Dq,� are uniquely determined. We proceed by
considering the cubeQ(2,1,1). This cube has exactly one face in common withQ(1,1,1),
namely the faceF [4]

(1,1,1) = F [1]
(2,1,1). It follows from the continuity (i.e. (4.2), where

and � are as in (4.3) and� = 1), theC1-smoothness conditions of form (4.4), where
,�, and� are as in (4.5) and� = 1, and theC1-smoothness conditions of form (4.7),
where = �q−1,[0,	,�]

(2,1,1) , that the coefficientsa�, � ∈ A(2,1,1) are determined. Note that
these coefficients are also uniquely determined—this concerns in particular the coefficients
a�, where� ∈ Rq−1(v(2,1,1)) ∩ P [1]

(2,1,1). By using some elementary computations or an
argument similar to Lai and Le Méhauté[16], one can see that if these coefficients are
determined using the above conditions, then theC1-smoothness conditions of form (4.4),
where,�, and � are as in (4.6) and	 = 0, � = 1, are automatically satisfied, too.
Here, it is essential that the coefficientsa�, where� ∈ (Rq(v(1,1,1)) ∪ Rq−1(v(1,1,1))) ∩
P [4]
(1,1,1) already satisfy conditions of this form. The setMQ in (5.4) is constructed such

that the following property is satisfied: if the coefficientsa�, where� ∈ M(2,1,1)∩A(2,1,1),
are given, then the coefficientsa�, � ∈ A(2,1,1) are uniquely determined from theC1-
smoothness conditions involving these coefficients. Therefore, an argument along the lines
of the proof of Theorem5.3 using the definition ofM(2,1,1) andM(2,1,1)\A(2,1,1) ⊆ M
shows thata� is uniquely determined if� ∈ Dq,�(2,1,1) = Q(2,1,1) ∩ Dq,�, while all the
C1-smoothness conditions of form (4.4) and (4.7), wherei = 2, j = 1, and k = 1,
are satisfied. It now follows from induction, the choice of points inM, and the same
arguments thata� is uniquely determined if� ∈ Dq,�(i,1,1) or� ∈ Dq,�(1,i,1) or� ∈ Dq,�(1,1,i),

i ∈ {2, . . . , n}.
Next, we consider the cubeQ(2,2,1). According to the above ordering, this cube has

exactly two faces in common with some of the cubes considered before, namely the faces
F [4]
(1,2,1) = F [1]

(2,2,1) andF [5]
(2,1,1) = F [2]

(2,2,1). It follows from the continuity (i.e. (4.2), where

 and� are as in (4.3) and� ∈ {1,2}), theC1-smoothness conditions of the form (4.4),
where,�, and� are as in (4.5) and� ∈ {1,2}, and theC1-smoothness conditions of
the form (4.7), where = �q−1,[0,	,�]

(2,2,1) or  = �q−1,[	,0,�]
(2,2,1) , that the coefficientsa�, � ∈

A(2,2,1)∪B(2,2,1) are determined. Since theC1-smoothness conditions along the edge with
endpoints

( 1
n
, 1
n
, 0

)
and

( 1
n
, 1
n
, 1
n

)
are consistent, it is clear that the coefficientsa�, where

� = �q−1,[0,0,	]
(2,2,1) , 	 ∈ {0, . . . ,2(q−1)}, 	 even, are uniquely determined. Moreover, using

the above argument again, we can see that the coefficientsa�, where� ∈ Rq−1(v(2,2,1)) ∩
(P [1]

(2,2,1) ∪ P [2]
(2,2,1)) are uniquely determined while all theC1-smoothness conditions of

form (4.4) involving these coefficients are satisfied. Hence,a�, � ∈ A(2,2,1) ∪ B(2,2,1) are
uniquely determined. The setMQ in (5.4) is constructed such that the following property
is satisfied: if the coefficientsa�, where� ∈ M(2,2,1)∩ (A(2,2,1)∪B(2,2,1)), are given, then
the coefficientsa�, � ∈ A(2,2,1)∪B(2,2,1) are uniquely determined from theC1-smoothness
conditions involving these coefficients. Therefore, an argument along the lines of the proof
of Theorem5.3 using the definition ofM(2,2,1) andM(2,2,1)\(A(2,2,1) ∪ B(2,2,1)) ⊆ M
shows thata� is uniquely determined if� ∈ Dq,�(2,2,1) = Q(2,2,1) ∩ Dq,�, while all the
C1-smoothness conditions of form (4.4) and (4.7), wherei = 2, j = 2, and k = 1,
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are satisfied. It now follows from induction, the choice of points inM, and the same
arguments thata� is uniquely determined if� ∈ Dq,�(i,j,1) or� ∈ Dq,�(i,1,j) or� ∈ Dq,�(1,i,j),

i, j ∈ {2, . . . , n}.
Finally, we consider the cubeQ(2,2,2). According to the above ordering, this cube has

exactly three faces in common with some of the cubes considered before, namely the
facesF [4]

(1,2,2) = F [1]
(2,2,2), F [5]

(2,1,2) = F [2]
(2,2,2), andF [6]

(2,2,1) = F [3]
(2,2,2). It follows from the

continuity (i.e. (4.2), where and� are as in (4.3) and� ∈ {1,2, 3}), theC1-smoothness
conditions of form (4.4), where,�, and� are as in (4.5) and� ∈ {1,2, 3}, and theC1-
smoothness conditions of form (4.7), where = �q−1,[	,
,�]

(2,2,2) with 	 = 0 or
 = 0 or� = 0,

that the coefficientsa�, � ∈ A(2,2,2) ∪ B(2,2,2) ∪ C(2,2,2) are determined. Since theC1-
smoothness conditions along the edges with endpoints

( 1
n
, 1
n
, 1
n

)
and

( 2
n
, 1
n
, 1
n

)
,
( 1
n
, 1
n
, 1
n

)
and

( 1
n
, 2
n
, 1
n

)
,
( 1
n
, 1
n
, 1
n

)
and

( 1
n
, 1
n
, 2
n

)
, respectively, are pairwise consistent, it is clear that

the coefficientsa�, where� = �q−1,[��(	,0,0)]
(2,2,2) , 	 ∈ {0, . . . ,2(q − 1)}, 	 even,� = 1,2, 3,

are uniquely determined. Moreover, using the above argument again, we can see that the
coefficientsa�, where� ∈ Rq−1(v(2,2,2)) ∩ (P [1]

(2,2,2) ∪ P [2]
(2,2,2) ∪ P [3]

(2,2,2)) are uniquely

determined while all theC1-smoothness conditions of form (4.4) involving these coefficients
are satisfied. Hence,a�, � ∈ A(2,2,2) ∪ B(2,2,2) ∪ C(2,2,2) are uniquely determined. The set
MQ in (5.4) is constructed such that the following property is satisfied: if the coefficients
a�, where� ∈ M(2,2,2) ∩ (A(2,2,2) ∪ B(2,2,2) ∪ C(2,2,2)), are given, then the coefficients
a�, � ∈ A(2,2,2) ∪ B(2,2,2) ∪ C(2,2,2) are uniquely determined from theC1-smoothness
conditions involving these coefficients. Therefore, an argument along the lines of the proof
ofTheorem5.3using the definition ofM(2,2,2) andM(2,2,2)\(A(2,2,2)∪B(2,2,2)∪C(2,2,2)) ⊆
M shows thata� is uniquely determined if� ∈ Dq,�(2,2,2) = Q(2,2,2) ∩ Dq,�, while all the
C1-smoothness conditions of form (4.4) and (4.7), wherei = 2, j = 2, andk = 2, are
satisfied. It now follows from induction, the choice of points inM, and the same arguments
thata� is uniquely determined if� ∈ Dq,�(i,j,k)

, i, j, k ∈ {2, . . . , n}.
This shows that all coefficients ofs are uniquely determined, while allC1-smoothness

conditions ofS1
q (�), q�2 are satisfied, and the proof of the theorem is complete.�

By counting the number of points inM, we now obtain the result stated in Theorem3.1.

Proof of Theorem 3.1.Theorem5.2shows that the setM(1,1,1) = MQ contains 4(q3 −
3q2+5q−2) points forq�2, and it is obvious that this is also the number of points in every
setM(i,j,k) defined in (6.1). Since the cardinality ofM(2,1,1)∩A(2,1,1) is 4(q2−2q+3), if
q�3, and 11, ifq = 2, it follows that the setM(2,1,1)\A(2,1,1)contains 4(q3−4q2+7q−5)
points fromM, if q �3, and 5 points fromM, if q = 2. The same number of points from
M are contained in the cubesQ(i,1,1),Q(1,i,1), andQ(1,1,i) i = 2, . . . , n. Therefore, the
total number of points inM contributed by all of these cubes is 4(q3 − 3q2 + 5q −
2) + 12 (n − 1)(q3 − 4q2 + 7q − 5), if q�3, and 16+ 15 (n − 1), if q = 2. The
cardinality ofM(2,2,1) ∩ (A(2,2,1) ∪ B(2,2,1)) is 8q2 − 19q+ 23, if q�3, and 15, ifq = 2.
Therefore, the setM(2,2,1)\(A(2,2,1) ∪ B(2,2,1)) contains 4(q3 − 3q2 + 5q − 2) − 8q2 +
19q − 23 = 4q3 − 20q2 + 39q − 31 points fromM, if q �3, and one point fromM,
if q = 2. The same number of pointsM are contained in the cubesQ(i,j,1),Q(i,1,j),

andQ(1,i,j), i, j = 2, . . . , n. Therefore, the total number of points inM contributed by
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all of these cubes is 3(n − 1)2(4q3 − 20q2 + 39q − 31), if q�3, and 3(n − 1)2, if
q = 2. The cardinality ofM(2,2,2) ∩ (A(2,2,2) ∪ B(2,2,2) ∪ C(2,2,2)) is 12q2 − 33q+ 37, if
q�3, and 16, ifq = 2. Therefore, the setM(2,2,2)\(A(2,2,2) ∪ B(2,2,2) ∪ C(2,2,2)) contains
4 (q3−3q2+5q−2)−12q2+33q−37 = 4q3−24q2+53q−45 points fromM, if q �3,
and no point fromM, if q = 2. The same number of pointsM are contained in the cubes
Q(i,j,k), i, j, k = 2, . . . , n. Therefore, the total number of points inM contributed by all
of these cubes is(n− 1)3(4q3 − 24q2 + 53q− 45), if q�3, and no point, ifq = 2. Adding
these numbers together, an elementary computation now shows that the total number of
points inM coincide with the numbers given in (3.3) and (3.4), respectively.

The proof of Theorem3.1 is complete. �

7. Remarks

Remark 7.1. The results of this paper can be extended to more general domains where
the inductive arguments from the proof of Theorem6.1can be applied (see Fig.9). Simple
examples of more general domains are obtained from cube partitions where there arenj
cubes in thejth space direction,j = 1,2, 3, i.e. a total number ofn1n2n3 cubes. In this
case, the dimension of the corresponding spline spacesS1

q (�) is given by

n1n2 + n1n3 + n2n3 + 3 (n1 + n2 + n3) + 4, if q = 2

and

(4q3 − 24q2 + 53q− 45) n1n2n3 + 2 (2q2 − 7q + 7) (n1n2 + n1n3 + n2n3)

+ 3 (q − 1) (n1 + n2 + n3) + 4, if q�3.

Remark 7.2. In Alfeld et al.[4, Theorem 4]a formula for the dimension forC1-splines of
degree�8 ongeneric tetrahedral partitions was given. The numbers given in Theorem3.1
and Corollary3.2 do not coincide with these dimensions and therefore we conclude that
�, the tetrahedral partition defined in Section 3, is non-generic forC1-splines, in general.
Moreover, we note that in Alfeld et al.[4, Examples 7 and 8]as well as in Alfeld et al.
[3, Example 26]the dimension of splines on particular cells is computed. These cells are
different from the cell considered in Section 5.

Remark 7.3. In Section 3, we compared the dimension ofC1-spline spaces with the dimen-
sion ofC0-spline spaces on type-6 tetrahedral partitions, where we observe that the relative
difference becomes smaller with larger degrees. We also note that the dimension of trivari-
ateC1-spline spaces is much larger than that ofC1-tensor spline spacesS1

d

⊗
S1
d

⊗
S1
d

of the same total degree. (Here,S1
d is the space of univariateC1-splines w.r.t. the knots

i
n
, i = 0, . . . , n.) If q = 3d, then these spaces are subspaces ofS1

q (�) which satisfy many
super-smoothness conditions across the interior triangular faces of�. For instance, it is easy
to see that the (tri)quadraticC1-tensor spline spaceS1

2

⊗
S1

2

⊗
S1

2 ⊆ S1
6(�), has dimen-

sionn3 + 12n2 + 6 n+ 8, which is much smaller than 273n3 + 222n2 + 45n+ 4, i.e. the
dimension ofS1

6(�). Similarly, the dimension of the subspaceS1
3

⊗
S1

3

⊗
S1

3 ⊆ S1
9(�),
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Fig. 9. A more general domain� decomposed in uniform cubes

is much smaller than the dimension ofS1
9(�). Moreover, the local Hermite interpolation

approach of Lai and Le Méhauté[16] for type-6 tetrahedral partitions� is based on a sub-
space ofS1

5(�) of dimension 102n3 + O(n2). Independently, Schumaker and Sorokina
[29] constructed the first box macro element which is based onS1

6(�). This approach uses
a subspace ofS1

6(�) of dimension 43n3 + O(n2).

Remark 7.4. The local interpolation methods mentioned in Remark7.3yield optimal ap-
proximation orderq + 1 for the spacesS1

q (�), if q ∈ {5,6}, and may be generalized to
q�7. However, it is not possible to extend these methods to lower degrees, because of some
structural reasons (see, for instance Remark 7.3 in[29]). Currently, only little is known con-
cerning the approximation properties of the spaces whenq ∈ {3,4}. Our results presented
here indicate that it seems reasonable that for quartic and perhaps for cubicC1-splines on
�, appropriate operators with approximation properties can be defined[30]. This seems not
to be possible for the spaceS1

2(�) which hasO(n2) degrees of freedom. On the other hand,
recently Rössl et al.[23] (see also[18]) applied the structural analysis of this paper to turn
it into a practical volume visualization method. This approach uses quadraticC0-splines
on� satisfying most of theC1-smoothness properties. The computational results and com-
parisons presented in these papers showed that from a practical point of view the quadratic
splines behave similarly asC1-functions. The basic idea in this method is to relax some of
the conditions of form (4.4) and (4.7) and to replace them by different useful conditions such
that appropriate operators for the quadratic splines can be defined which simultaneously
approximate the values and the derivatives of smooth trivariate functions. Compared with
previously existing methods in the area, the new algorithm combines several advantageous
features which are desirable taking in account the specific requirements of efficient volume
visualization.
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