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Abstract

We consider a linear space of piecewise polynomials in three variables which are globally smooth,
i.e. trivariateC1-splines of arbitrary polynomial degree. The splines are defined on type-6 tetrahedral
partitions, which are natural generalizations of the four-directional mesh. By using Bernstein—Bézier
techniques, we analyze the structure of the spaces and establish formulae for the dimension of the
smooth splines on such uniform type partitions.
© 2004 Elsevier Inc. All rights reserved.
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1. Introduction

Spline spaces are of particular interest in approximation theory and computer aided
geometric design. For splines in one variable there exists an almost completely developed
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theory (cf.[6,17,22,24]). On the other hand, much less is known for bivariate and trivariate
splines (cf[9,32], and the references therein), i.e. splines which are defined on triangulations
and tetrahedral partitions, respectively. The main reason for this is that these spaces have
a more complex structure than univariate spline spaces, and even the most basic problems
for these spaces are sometimes difficult to solve.

Efficient approximation and interpolation methods using multivariate splinef2@j.
and the references therein, and for instance, the bivariate approacfiek i#,19,21])
require some knowledge on the structure of these spaces. One such basic structural question
in multivariate spline theory is to determine the dimension (i.e. the number of degrees of
freedom) of the spaces. This problem is easy to solve for continuous multivariate splines,
but the situation is completely different and stands in striking contrast to univariate theory
if we consider multivariate splines satisfying smoothness conditions.

In this case, the problem of determining the dimension of splines on given partitions
becomes a complex task particularly when the degree of the splines is low. For bivariate
splines on given triangulations the most general results are lower and upper bounds on the
dimension (cf[25,26]). Moreover, the dimension is known for splines on uniform partitions
(cf. [10]), on arbitrary triangular cells (cf27]), and for certain degrees (¢2,14,15]). For
smooth trivariate splines (non-trivial) bounds on the dimension of the spaces are difficult
to obtain in general, and it has been recognized that even for splines defined on arbitrary
tetrahedral (half) cells an exact dimension count would require at least some knowledge
on the dimension of bivariate spline spaces of arbitrary degre¢3(cExample 25]]4,
Remark 66]).

There are only a few papers on the dimension of trivariate splines and in fact very little is
known about these spaces to date. Early results known from the finite element literature (cf.
[33]) deal with certain subspaces (which are now called super spline spaces) of splines with
relatively high degree. For splines of low degrees, results are known maird{fsplines.

For instance, Alfeld1] developed a local Hermite interpolation method using trivariate
quintic super splines on tetrahedral partitions, where all the tetrahedra are split into four
subtetrahedra (trivariate Clough—Tocher split). Quintiesplines with super smoothness
conditions on uniform type partitions and on certain classes of tetrahedral partitions were
investigated in connection with the local interpolation methods of Schumaker and Sorokina
[28], and Lai and Le Méhau{é6]. Farin and WorsefB81] generalized the bivariate Clough—
Tocher element for cubi€!-splines by splitting each tetrahedron into 12 subtetrahedra.
For an application of this method in the context of so-called A-patches, see BajdB3t al.

As a byproduct of these methods the dimension of the spaces on the resulting tetrahedral
partitions was determined.

In this paper, we determine the dimension of trivari@tesplines of arbitrary polynomial
degree on uniform type tetrahedral partitiohswhere no tetrahedron is split. The parti-
tions 4 are obtained as a natural generalization of the four-directional mesh known from
the bivariate spline theory. Roughly speaking, given a uniform cube partition of a three-
dimensional domain, each culkis subdivided into 24 tetrahedra which have the center
of Q (i.e. the intersection point of the four diagonal€Qhas a common vertex (see FR.
left). The partitions1 are called type-6 tetrahedral partitions because they are obtained from
slicing each cub® with the six planes which contain two opposite edgeliiWe analyze
the structure of th&'1-splines ond by using the piecewise Bernstein—Bézier representa-



T. Hangelbroek et al. / Journal of Approximation Theory 131 (2004) 157-184 159

tion of the splines and determine the dimension of the trivariate splines by constructing a
suitable minimal determining set! for the spaces (i.e. roughly speaking a subset of the
domain points such that the associated Bernstein—Bézier coefficients uniquely determine
the splines while all the smoothness conditions are satisfied, see Alfel{3}).dlo do this,

we use a well-known result (cf7,12], see als¢9]) which characterize€'-smoothness
across the common triangular faces of two neighboring polynomial pieces in Bernstein—
Bézier representation. Our approach works as follows. We first give minimal determining
sets forC1-splines on a particular tetrahedral cell, i.e. one cube which is subdivided into
24 tetrahedra. Then, we construct step by step a minimal determining $et the whole
C*-spline space. This is done inductively by considering the tetrahedra of the partition in
an appropriate order (see the proof of Theofthin Section 6), where in each step the
remaining degrees of freedom are determined. Counting the number of poifsvie

obtain explicit formulae for the dimension of tkig-spline spaces of arbitrary polynomial
degree (Theorer.1and Corollary3.2), while our construction oM (to be found in the
beginning of Section 6) gives some deeper insight into the structure of the spaces. The proof
of this result is complex.

The paper is organized as follows. In Section 2 we give some preliminaries on trivariate
splines, their piecewise Bernstein—Bézier representation, minimal determining sets, and
smoothness conditions. In Section 3, we define uniform tetrahedral partitiansl state
our main results. We give explicit formulae for the dimensio@ bfspline spaces of arbitrary
degree ord. In Section 4, we introduce some notation and we rewritethemoothness
conditions of the spaces in a convenient form which is needed for the arguments developed
in the subsequent sections. Section 5 contains minimal determining s€ts$ptines on a
special tetrahedral cell which consists of 24 tetrahedra. These results are used in Section 6
where we construct a suitable minimal determining set for the spline spaces and prove our
main results. The paper concludes with some remarks in the final section.

2. Trivariate splines, Bernstein—Bézier representation and MDS

We briefly recall some notation well-known in multivariate spline theory[&,9,12]).
For any integeq, we call

P, = span{fy/zX: i, j, k>0, i+ j+k<q)

the (qge’) dimensional space afivariate polynomials of total degree q. Given a (non-
degenerate) tetrahedr@®n= [vo, v1, v, v3]iN R3 with verticesvg, vy, v2, andvs, the linear
polynomialsi, € Py, v =0, ..., 3, with the interpolation property, (v,) = dy 4, 1 =
0,..., 3, are called théarycentric coordinates w.r.t. T. (Here, and in the following, ,
denotes Kronecker’s symbol.) Every polynomgak P, can be written in itdernstein —
Bézier representation as

— 2 : q,T
P = ai,j ke Bi,j,k,/é’ (21)
i+ j+k+l=q
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where
T . .
thjke—zvjqkw %/9)367’4, i+j+k+¢=q,

are theBernstein polynomials of degree q w.r.t. T. EachBernstein —Bézier coefficient
a;.j ke € Rof pis associated with thdomain point éiT’j’k,@ = (ivo+ jv1+kva+L€v3)/q,
and theset of domain points in T is denoted byD, r = {fiT’j’ky,é i+ j+k+e=q}.
A point @T,j,k,g € D, r is said to bén distance m of the triangular facgvo, vy, v2] of T,
if £ =m.

We call a set of tetrahedrd a tetrahedral partition of a finite polyhedral domain
Q C R® if the intersection of any two different tetrahedra frafmis a common vertex,
common edge or common triangle, and the union of all tetrahedra frasnequal toQ.
Given a tetrahedral partition of Q andr € {—1, ..., ¢ — 1}, we set

S,;(A) = {s € C"(Q) : s|7 € P, for all tetrahedrdl" e 4}

for the space ofrivariate C"-splines of degree q w.r.t. 4.

The coefficients . o () = i jue(s) = ai jue(slr), i+j+k+0 =g, 0fs € S2(4)
in representation (2 1) of its polynomial piecgs £ P,, T € 4, are uniquely associated
with thedomain points in Q which we denote by

Dys= ] Dyr.
TeA
Given a vertex of 4 and77 = [v, v%, vy, v ] ., = [v, v1 ,v2 ,v3‘] the tetrahedra
in 4 with common vertew, form € {0, ..., q} we caII
‘/T .
Rm(v) U{ qimljk.l+]+k:m}
thering with distance maround v. Moreover, form € {0, ..., ¢}, the set

D" () = JR @)

is called thedisk of radius maround v. (As in Schumaker and Sorokifi28], we use the

same terms as for bivariate splines, here. In order to avoid confusions, we note that in the
trivariate settingR™ (v) andD™ (v) are sometimes called shell with distanmoearoundv

and ball of radiusn aroundv, respectively.)

Following Alfeld et al.[2], we call M € D, 4 adetermining set (DS) for a linear
subspace S of SO(A) if setting the coefﬂmentsg(s) ¢ € M of asplines € S to zero,
implies thats = O A determining sefM is calledminimal determining set (MDS) for
S, if no determining set foS with fewer elements tha exists. EquivalentiyM is a
MDS, if the following property holds: if we set the coefficieats(s), ¢ € M, of a spline
s € Sto arbitrary values, then all its coefficients(s), ¢ € D, 4 are uniquely determined,
i.e.sis uniquely determined. IM is a minimal determining set faf, then it is obvious
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Fig. 1. lllustration of the six smoothness conditions given by Ed)((left) and (4.7) (right) for the case of piecewise
cubics, i.eg=3. Smoothness conditions across the common triangular face of two neighboring tetrahedra which
degenerate to univariate smoothness conditions (i.e. three coefficients are involved in each condition) are shown
on the left, while the non-degenerate case (i.e. five coefficients are involved in each condition, no barycentric
coordinate vanishes at the opposite vertex) is shown on the right. In both cases, the BB-coefficients associated
with domain points shown as white dots are not involved in any smoothness conditions across the shaded triangular
face, while the remaining BB-coefficients (illustrated as grey dots) are involved in such conditions

that #M) coincides with the dimension di of S. (Here, and throughout the paper we
denote by # the cardinality of a finite set, and by dim the dimension of a linear space.)

Given an arbitrary tetrahedral partitioh, the dimension OSS(A), g=>1, is easy to
determine (cf[3, Theorem 10]). In this case, it is obvious thaf 4 is a MDS forS(?(A)
and a straight forward computation shows that

dimSY() = (131 Ta+ (13 Fa+ @ -V Eg+ Vs, q>1, 2.2)

whereT, is the number of tetrahedra df F 4 is the number of triangular faces df E 4 is
the number of edges af, andV, is the number of vertices of. (Here, and in the following
we set(;.) :=0,ifi < j.)Forlater use, we note that if we set, in additi&nfor the number
of interior vertices ofA, Vg for the number of boundary vertices af F; for number of
interior triangular faces of\, andE; for the number of interior edges &f, then the Euler
type formulae

Ve =2Ty— F +2,

2.3
Ty=Vi—E +F +1, (2:3)

hold true (sed4], for instance). The problem of determining the dimension of trivariate
splines becomes more difficult if we consider subsp&e&sg(zl) possessing smoothness
conditions.

In the following, we are interested ifil-splines, i.e. we consider the subspaSes-
S‘}(A), q =2 (whered is the tetrahedral partition of uniform type described in the next sec-
tion). In order to construct minimal determining sets for these spaces, we use the well-known
smoothness conditions connected with the piecewise Bernstein—Bézier representation of
the splines (cf7,9,12]). Letl’ = [vg, v1, v2, v3], T = [vo, v1, v2, D3] € 4, betwo different
tetrahedra off, and suppose thate S‘?(A) isgiveninits piecewise representation (2.1) with
coefficientsa; j ke = ai jke(s) = aijke(s|r) anda; jre = aijie(s) = aijre(sl7),
i.€.ai jr0=aijk0, I +j+k=gq.Thensis C1-smooth across the common triangular
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faceT N T = [vg, v1, vo] of TandT, ifand onlyifforalli + j +k =g — 1,

i, j k1= ait1,jk,0 20(03) + @i, j+1,k,0 21(03) + ai, j k+1,0 A2(D3)
+ai,j k1 43(V3), (2.4)

where/,, v=0, ..., 3, are the barycentric coordinates w.T.t. Examples for these linear
constraints are illustrated in Fig.where the common triangular face is shaded grey, the
domain points associated with the BB-coefficients involved in the smoothness conditions are
shown as grey dots, and the conditions are illustrated as thick lines and small tetrahedra with
thick boundary lines, respectively. It is known that the trivariate conditions (2.4) become
lower-dimensional conditions if some of the involved barycentric coordingteanish at
v3. These are called thdegenerate cases . Fig. 1 (left) shows such an example, where
two barycentric coordinates are zeragand hence the smoothness conditions degenerate
to conditions as in the univariate case (see Eg. (4.4) in Section 4, for instance). In the
non-degenerate case (no barycentric coordingtanishes atiz) each of the smoothness
conditions involves 5 BB-coefficients which is shown on the right of Eigee Eq. (4.7) in
Section 4, for instance). In the next section we consider tetrahedral partitions such that for
the corresponding!-splines only these two types of smoothness conditions appear. This
is described in more detail in Section 4.

By using the piecewise Bernstein—Bézier representation of the splin€stmoothness
of its polynomial pieces across the common triangular face of two neighboring tetrahedra
is easily described by conditions (2.4). However, if we consider a complete tetrahedral
partition 4, then the analysis of these connections becomes a complex task even in the
case wher is of uniform type because for an overalt-smooth spline these are many
conditions (see Section 4) which have to be simultaneously satisfied across all the four
(interior) triangular faces of every tetrahedron and they cannot (in general) be considered
independently.

3. Main results

In the remainder of this paper we consider a tetrahedral partitiaf the unit cube
Q =1[0,1] x [0, 1] x [0, 1] < R® which is obtained as follows. Using+ 1 parallel planes
in each of the three space dimensions we first subdi@iiteto n3 subcubes,

Ociw =[G [ B2 A < 52 4] idk=1om,
Welet]-"m K b= 1,...,6, bethe six square faces@f; ; 1), where we use the following
orderlng Ieft = 1), front (¢ = 2), bottom (¢= 3), right (¢ = 4), back (¢= 5), top
(E = 6). Fori, j,k € {1,...,n} each subcub&; ; 1) is split into six square pyramids

ple by connecting its mldpomt

(i, J.k)

o _(2i-1 2j-1 2k-1
V(i,j.k) = 2n > 2n ° 2n

with the vertices of the fac§([f/ k> ¢=1,...,6. Then, we insert both diagonals in each
of the faces?-"m

ik denote their intersection point by{f’]j,k), and connecby; ;) with
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Fig. 2. The uniform type-6 tetrahedral partitiahis obtained by subdividing each subcubg; ; i) into 24
tetrahedra: firsQ; ; ) is splitinto six square pyramids, then each pyramid is splitinto four tetrahedra (left). The
intersections off with certain planes parallel to the three unit planes are four-directional meshes (right)

wt ¢ =1,...,6. This further subdivides each pyral (] b into four tetrahedra,
and] we obtain a tetrahedral partitiahy; ; 1, of each subcubeg(, by Which consists of
24 tetrahedra. The construction is illustrated on the right of Eid=inally, we define a
tetrahedral partitiont of Q as

A= U Adajw-

We call4 atype-6 tetrahedral partition because for each subcubg; ; i) the subdivision
into the 24 tetrahedra described above is also obtained by sl@ing, with the six
planes which contain opposite edges@f ;). Alternatively, perhaps one could call
a nine directional (three dimensional) mesh, because (essentially) three additional planes
are needed for fixing the cubes. In Carr et[8].the above construction is callecface-
centered 24-fold subdivision of the cubes. The intersection dfwith any planeP parallel
to one of the three unit planes (in distarfe¢o the origin) gives the four-directional mesh
(sometimes called a unifora? triangulation) of the intersecting square domain Q (see
Fig. 2, right) and therefore the type-6 tetrahedral partitibis a natural generalization of
the four-directional mesh to the trivariate setting.

Itis easy to see that for this uniform tetrahedral partitigrwe have

TA=24n3,

Fy = 48n%+ 12n°,
E4=29n°+18n° + 3n,
Vi=5n2+6n2+3n+1

(3.1)

for the number of tetrahedrBy, the number of triangular faces,, the number of edges
E 4, and the number of verticdg, of 4, respectively. Hence, (2.2) and some elementary
computations imply that

dim SJ(4) = (4g° + 1) gn® + 6¢°n®* +3gqn+ 1.  g>1. (3.2)
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Table 1
Comparison of dimensions of splines on type-6 tetrahedral partitions for low degrees
g dimska) dim S2(4) dimS, *(4)
1 4 5n°+6n2+3n+1 9613
2 3n2+9n+4 34n3 +24n2 +6n+1 24013
3 6n3+24n2+18n+4 111#3 +54n2 +9n+1 48013
4 391346602 +27n+4 26013 + 9612 + 120 + 1 84013
5 120n3+132n2+36n+4 50513 + 15072 +15n+1  1344n3
6 273n3+222n24+45n+4 87003 +216n2+18n+1  2016n3
7 52213 +336n2+54n+4 13793 +294n2 +21n+1  2880n3
8 891n3+474n2+63n+4 205613 +384n2+24n+1 39603
9 1404n3 + 63602 +72n+4 292513 + 48612 +27n+1 528003

More complex arguments are needed to determine the degrees of freedthswiooth
splines. In Section 6, we prove the following main result on the dimensiﬁé(ai), q=2,
where4 is a type-6 tetrahedral partition.

Theorem 3.1. The dimension Of;(A) is given by

3n°+9n+4, ifg=2 (3.3)
and
(4q° — 249% + 53¢ —45) * + 6 (29> = Tq+T) n> +9(q — 1) n + 4,
if ¢>3. (3.4)

By using the result of Theore®1, we explicitly compute the dimensions of the spline
spaceaﬁj(A), q €{2,...,9}, i.e. for low degrees, and compare these numbers with the
dimensions of the continuous and non-continuous spline spacesM(sae Tablel). We
observe (relatively) big differences for very smaliwhile it is evident that these numbers
become asymptotically the same wieimcreases.

In the following, we give some alternative formulae for the dimension ofthepline
spaces w.r.t4 where we use the terminologies from the previous section. To do this, we note
that for a type-6 tetrahedral partitiohthe number of interior verticeg, and the number
of boundary vertice§s, respectively, are given as follows

Vi=5n3—6n%+3n-1,
Vg =12n% + 2.

The next corollary is obtained immediately from Theor8rand some elementary com-
putations by using (3.1) and the Euler type formulae (2.3).

Corollary 3.2. The dimension 05'(}(41) is given by
L <7TA—2FA —8EA+32VA)= 1 (24V. +14VB—5TA+28)
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= (9F +47V - 28E +79),
if g =2 (3.5)

and

% (24° 364 +1750-219) T +12(42 — 8¢ +12) Fa
+12 (3q —7) Epn+48V,)
=% (366 - DM +12(4% -2 +2) Vi
+(2¢% = 1242 +19g — 15) Ty — 12 (24 — 7 + 3))
= & (2° 54+ 9) Fi + 24° +12% +7g ~3) Vi

—(2¢% +124% — 29¢ + 33) F 4+ 2¢% + 1242 + 7q + 45),
if ¢>3. (3.6)

4. Domain points andC*-conditions on type-6 tetrahedral partitions

For proving our main result (Theore®l) we have to analyze the spline spaSéSA),
whereq > 2. This is done by constructing an appropriate MP5(see Section 6) for the
splines on the partitiod introduced in the previous section. By the nature of the problem the
choice of points in\ is sometimes non-symmetric and hence we need a tool to conveniently
access individual domain points fraf), 4 within the tetrahedra of the different cubes. In
this section, we develop such atool. We introduce a terminology which allows us to describe
the setM for splines of arbitrary degrees (including the cases of quadratic, cubic and quartic
splines). In particular, we use this specific notation to rewrite the smoothness conditions
(2.4) for the splines on type-6 tetrahedral partitichs a convenient form, such that the
subsequent proofs can be kept of moderate length. It generalizes a description of domain
points and smoothness conditions to the trivariate setting which was introduced in the
scattered data fitting method of Davydov and Zeilfell] for bivariate splines on the
four-directional mesh.

For alli, j, k € {1, ..., n} we set for the ring with distance € {0, ..., ¢} around the
midpointv(i,j,k) of O, jk)

R™ (i) = | U U

pe(0.2m) oxcld. - 2ni v=1.2.3 (4.1)
. e gmm(po] (P, 0,0)—(m,m,m)
({¢ €Dy A ¢ €=C<ajn) =V, jk T 2qn 1.

where here and in the following we use the abbreviations

ni(a, b, c) :==(a, b, c), m2(a, b,c) = (b,a,c), n3(a,b,c) :=(b,c,a).
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The idea is to consider the/? + 6 g2 + 4 ¢ + 1 domain points fronD, 4, ,,, inthe cube
Q. j.l as points which are organized on the boundary f1 individual subcubes around

Vi, jk N Q. jx- The indexm of & = f'” Am (.0 91 i dicates the distance of ¢ to the
midpointv; ; x), and is associated with the boundary of thiéh subcube. Hence, the case

m = 0 degenerates to a subcube which exists of exactly one point, i.e. thevpgint,

while the casen = ¢ describes all the domain points which lie on the boundarg @f; x),

which is theqth subcube. Moreover, there aye- 1 additional subcubes aroung ; r)
which are in between these two cases. The choice afidz,, v = 1,2, 3, determines

on which square face of the boundary of the subcubes a pagplaced. More precisely,

p = 0 andv = 1 means that the corresponding points lie on the left (boundary) square
face of the subcubes (i.e. in the pyranﬁP(El1 k)) while p = 2m andv = 1 means that

the corresponding points lie on the right (boundary) square face of the subcubes (i.e. in the
pyramldP[4 k)) Similarly, the choicev = 2 describes points on the frong & 0) and

back (0 = 2m) faces of the subcubes (i.e. in the pyrarm(a andP(, ) respectively),
while v = 3 includes all the domain points on the bottopn:é 0) and top p = 2m) faces
of the subcubes (i.e. in the pyran‘ittj3 0 andP 61 J) respectively).

We try to illustrate the introduced termlnology in Fig). for the casey = 3. In order
to draw the domain points on the boundary of each of the four subcubes simultaneously,
we first map the six boundary faces of each subcube into the plane as illustrated in the
top of Fig. 3 (here,[¢] indicates the pyramids fj k)WhICh intersect the corresponding
square face, the cube is unfolded so that the Ieft square fade]i-e.[1], is in the middle
of the cross, for instance). Then, we show the domain points on the boundary of the four
subcubes form = 0,1,2, 3, where we draw the points by indicatifg= ¢’ ”,g)(p a.7]
with [n,(p, g, 7)]. In addition, we add the diagonals obtained from the subd|V|S|on of
the cubes into the 24 tetrahedra. By the nature of the above mapping some of the do-
main points appear more than once, and therefore we show the essential points using grey
boxes.

For later use, we call the domain points inside the squarefé,”djek) of Q. k), i.e.the

pointsé of the form¢ = &% []”}(()0 .0

zero of ]—‘ i wherev = 1,2, 3. In addition, we call the domain points which are on

,0,1€{0,...,2g9}, 0+ tevenpoints at a distance

the next Iayer away from the square faég]j’k) of Q. j.p, i.e. the pointsl of the form

¢ = izfjlign"(o’a’r)], g,7 € {0,...,2(¢ — 1)}, 0 + 7 even, oré = & [Jn}(()l ool
¢=gpimster Dl g e o, Z(q ~ 1)}, cevens e {0 2}, 0ré =& J”;jf‘””, ce

{0, 2¢9}, 1 € {0, 29 — g}, points at a distance one of }' Iy wherev = 1, 2, 3. In Fig.4,

again we consider the cage= 3, use the above mapplng and show the domain points in
distance one and zero of the square faEg%,k), ¢ =1,2,3. Obviously, in this case these
points are on the rings R(v, ;. r)), wherem e {2, 3}. In this figure the domain points are
shown as dots (containing various symbols) and we indicate the essential points by using
grey boxes. The points at a distance zero and oné([jdf are shown as grey dots, while

the points at a distance zero and onéﬁj 8 and F, are indicated by large circles

(l ] k)
and crosses, respectively.
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Fig. 3. Indexing the domain points within a cul®; ; x) for ¢ = 3. The boundary faces of the four subcubes,
i.e. the ringsR™ (v(; j x)), contain 1,14, 50, and 110 domain points for = 0, 1, 2, 3, respectively. These points
are indicated by showing their indéx, (p, g, 7)]

In the following, we seta; = af; ][.72';“‘7’7)], if & =& ][”,;)(p 291 for the coefficients

as = ag(s), ¢ € Dy 4, of asplines € Sc}(A), q =2, on a type-6 tetrahedral partitiah
and we proceed by rewriting the (remaining) continuity and smoothness conditions (2.4)
for the spline spaces. Forj, k € {1, ..., n}, the continuity ofs on the common triangles
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Fig. 4. The sets of domain points at a distance one (left) and zero (right) of the left, front and bottom faces of a
cube in the casg = 3

of the facesF-- and]—'([ﬂl,j,k), i # 1, F2 and]—'ll 11 J # 1, andF [3]. and

(i, J.k) (i, j.k) (i.j.k)
Fih 1) k # 1, respectively, implies that
aa = aﬂ’ (42)
where

_ #q9.Imy(29.0.7)] _ #4,[my(0,0,7)]
% =CG ik —e,  ANAE=C50 0 ; 4.3)

o, € {0,...,29}, o +tevenyv e {1,2 3}, ande, = (dy)u=1,23. Fori, j. k

{1,...,n}, theCl-smoothness conditions s&cross the common triangular faceSRﬁ} o
and]—“”l gl F 1, F ([12]] 0 and]—'([flj 1o # L and.F j 3 and]-‘([lG]] k1) k # 1, re-
spectlvely, are given as

ay = % (ap + ay), (4.4)
where

o= q.,[m,(0,0,7)] ﬁ: ét(Ii’—j:!.],{[)n‘,(O,a—l,r—l)], andy _ ézgi’—j:!.l,c[)fifq—zo—l,r—l)]’ (4.5)

(0. j.k)

o,1€{l,...,29 — 1}, 6+ teven, and € {1, 2, 3}. We observe that the'-smoothness
conditions ofs across the common triangular faces of the four tetrahedra inside each pyra-
mid P[Zj o =1 , 6, are given by the same Eq. (4.4). More preciselyjfgrk <

{1,...,n}, (4.4 holds for allx, 5, andy of the form
m,[ny(p,0,0)] m,[ny(p,0—1,0+1)] _ em,[my(p,o+1,0—-1)]
a=Cajn 0 B=Can candy = &y
and
_ emIn(p,0.2m—0)] p _ gm,[m(p,0—1,2m—0—1)]
%= Sk B=Eain , and
= my(p,0+1,2m— 6+1)] (4.6)

(@, j.k)
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respectively, where € {0,2m}, c € {1,...,2n — 1}, m=1,...,q,andv € {1,2, 3}.
TheC*-smoothness conditions (4.5) and (4.6) afs illustrated in Figl (left) by showing
the case of cubic splines (i.e.= 3), where we symbolize the domain points associated
with the involved Bernstein—Bézier coefficients by grey dots, while others are shown as
white dots. For fixedn € {1,...,q} the conditions described by (4.4), whexef, y
are as in (4.6), involve Bernstein—Bézier coefficients where the associated domain points
are on the ringR™ (v, j.x)), only. Obviously, these conditions are of univariate type. In
addition, for the partitiont there areC1-smoothness conditions involving Bernstein—Bézier
coefficients associated with domain points on the riRg¥v, ; 1)) and Rm_l(v(,;j,k)),
simultaneously. These are thé-smoothness conditions shcross the common triangular
faces of tetrahedra contained in different pyramicﬂgj?,?) 73“Z ! oY ¢ # ¢, of the same
cubeQ; ; «. These (non-degenerate) conditions involve five coefﬁments and are illustratedin
Fig. 1 (right)—again this figure deals with the case of cubics, the involved Bernstein—Bézier
coefficients are shown as grey dots, and the others are shown as white dots.

Fori, j,k € {1, ..., n}, theCl-smoothness conditions sacross the common triangular
faces of different pyramids i; ; ; are of the form

ay = (aﬁ +ay) — %(ag + ay), (4.7)

whereu, 5, 7, { andy are given as

_ gm 1,[ny(0,0,0)] ﬂ gm [y (6+1,1,0)] em, [, (04+1,0, 1)]

Y=

>(i,j,k) >(i,j,k) AR (AN 9]
+(0,0,0)] +(6+2,0,0
é([ ITC (0,0,0)] , andn — 6(, Jﬂ (o )]
_ gm—=1,[n(0,2(m—1),0)] [my(o+1,2m, 1) y [y (6+1,2n—1,0)]
“—fmk) b= 0 = i) ;
m,[n,(c,2m,0)] em, [T, ((H—Z 2m, O)]
C=<ilin s andy = gy
_ gm—1,[n,(0,0,2(m—1))] em,[my(0+1,1 2m) . [my(0+1,0,2m—1)]
%=, j0 B=EGm 7 =E0 ,
m,[1y(5,0,2m)] _ gm,[mny(6+2,0,2m)]
0= Culik . andn = ¢y’ )
and
_ gm—=1,[ny(0,2(m—1),2(m—1)] em,[m,(6+1,2m,2m—1)]
Cx—f(ijk) s B=Cilin ’
Em [my(o+1,2m—1,2m)]
(i,J.k) ’
v(0,2m,2 W(042,2m,2m
C— gt am@l andy = & ) (4.8)
respectively, where € {0,...,2(m — 1)}, sevenyn =1, ...,q,andv € {1, 2, 3}.

5. Minimal determining sets for C1-splines on a tetrahedral cell

We consider the spac@%(A(l,l,l)), q =2, whered1 1,1)is obtained from subdividing
the cubeQ := Q(1,1,1)into 24 tetrahedra. This is the case= 1 in Section 3 andl(1 1,1,
is atetrahedral cell with one interior vertex := v(1.1,1). This can be considered as the
starting point of our inductive method for proving our main result (TheoBeh) which
is presented in Section 6. In the following, we give two different MDS for the spaces
Sl(A(l 1,1y, ¢ =2, which we denote by\/lQ andM g, respectively. The choice of points
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in the first set/\7Q is quite symmetric, and the basic idea here is, roughly speaking, that

we choose pointg™ ™ ®-70] .— ’(”l”[l“"'l()”"”)] on the ringsR” (v) by working from the
interior to the boundary a®, i.e. we consider the ring8” (v) inthe ordemm =1, ..., q.

Computing the cardinality aM o, we determine the dimensionﬁ%zl(l,l,l)), qg>2.The
second MDSM ¢ for S;(A(l’l’l)), g >2, is more complex thaoM since it possesses
fewer symmetries. The below proof (of Theorén8) shows that for this set different
arguments are necessary. In this case, our inductive proof works from the boundary of three
square faces dP to the interior, and then—using induction again—from the interior to the
boundary of the three remaining face<pfWe take advantage of the fact that at this point
it is sufficient to show that ¢ is a DS. Moreover, on the other hantl{, is chosen such
that it allows us to deal witltX-splines, where the values as well as its first derivatives are
already determined across certain square faces at the bound@rad therefore we need
M g for the construction of the MD3 for the whole spline spac@(A), g >2.Infact,
the setM ¢ is the key to building up the construction for the whole space which we present
in Section 6. Note that both MDS give some insight into the structure of the trivariate spline
spaces. »

In the following, we defineMy < D, 4, ,,,- To do this, we need some auxiliary sets
which we denote byp, A™(v), and@™ (v), m = 2, ..., q. First,D € R(v) is a simple
set which determines the points from the disk with radius 1 arauide set

D = (eH1000) y (hIm@0.01 1y — 7 2 3). (5.1)

Hence,D contains the points which are shown as black dots for themasel in Fig.5.

In this figure, we use the same mapping for the different rings as in the top & Figain,

we show the cas¢ = 3, here, and since some of the domain points appear more than once,
we indicate the essential points by using grey boxesnFar{2, ..., g}, we set

Am () == U U U {ém,[n\‘(p,a,r)]}.

pe{O’Zm} c€{0,....2m} y=1,2,3
1€

{o,2m—a}

These sets describe the points on the diagonals of the boundary of the subcubes (see previous

section) associated with the ring" (v), m = 2, ..., ¢. In Fig. 5, we show them as grey
dots (in the cases = 2 and 3). Moreover, we lé®?(v) := @ and form € {3, ..., ¢}, we
set

") = U U U {5m,[7rv(p+1.a+1,r)]}.

pe(2....2m-1)-2) ¢e{0,2n-1} y=1,2,3
p even 1€{0,2m—a}

These sets describe certain points being at a distance one to some of the interior triangular
faces of4(1,1,1) with two vertices ofQ. To describe this differently, one can say that these
points are on the boundary of certain subcubes (see previous section) associated with the
ringsR™(v), m = 3, ..., q, and close to the edges of these subcubes. In5-ige show
them as white dots (in the case= 3).

Roughly speaking, the sdtl 5 is now essentially defined by removing the points on the
four interior triangular faces of each pyramid@(grey dots in Fig5) and certain points
which lie at a distance one to the remaining interior triangular fac&3 @fhite dots in
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Fig. 5. The choice of points fQA7Q in the case; = 3. The figure shows the ring®” (v), m = 1 (top, left),
m = 2 (top,right), andn = 3 (bottom), where the points iv o are marked by black dots

Fig.5), and adding the points frofd. In the example of FigS,ﬂQ consists of all the points
shown as black dots surrounded by grey boxes. Here, weghav8 and the cardinality of
My is equal to 4+ 12+ 36 = 52. More precisely, we define

q
Mg:=pu | (Rm(v)\(Am(v) u @m(v))). (5.2)
m=2

Theorem 5.1. The set/WQ is a minimal determining set f(ﬁ’(}(A(l,l,l)), q=2.

Proof. Let arbitrary coefficients:: = as(s), ¢ € MQ, of a splines € Sql(A(l,l,l)),
g >2, be given. We have to show that all coefficientssof.e. the coefficients:, where

= Dy a4, =D(v), are uniquely determined, while all th@&"-smoothness conditions
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—2a+b+c+d C+dr_

—at+b+d b
C

Fig. 6. Computation of coefficients associated with pointRi(v)

of the form (4.4), where, 3, andy are as in (4.6), and (4.7), whezef, y, {, andn are as
in (4.8), are satisfied.

First let us note, that the choice Bfuniquely determines all the coefficients associated
with points in the diskD(v). This easily follows from some elementary computations
using the 24Ct-smoothness conditions involving the coefficients associated with points
from that disk, only. The results of these computations are illustrated in6kigthere
we seta = ag, & = EHO00 o g g = EHI2001 g o = 110200 gng
d = ag, &= 12021 and compute the remaining coefficients fr@th(v). In addition,
we havea; = (—a + b + ¢ +d)/2, if & = 01000,

We now claim that the coefficients:, ¢ € D™ (v), are uniquely determined for <
{2, ..., q}. To show this we use induction.

The casen = 2 differs somewhat from the remaining cases, and therefore we first
consider this case. Here, we have to show that the coefficients R2(v), are uniquely
determined. Since the pointé!™ @291 5 ¢ ¢ (0,4}, v = 1,2, 3, are contained itM o,
it follows from a standard argument known from bivariate spline theoryZel) involving
theCt-smoothness conditions of the form (4.4), wher@, andy are as in (4.6) ana = 2,
thata; is uniquely determined if € A2()\{&?1777 : p, g, 7 € {0, 4}). As we have seen
above, the coefficients sfassociated with points fro!(v) are uniquely determined, and
hence we can now apply tie*-smoothness conditions of the form (4.7), wherg, v, ,
andyis asin (4.8) anah = 2, which determine the remaining coefficientsf(v), i.e. the
coefficientsa;, where¢ = 21721 5 1 € {0, 4}. Any of these coefficients: (which
correspond to one of the eight corners of the subcube associate®#ith) is involved in
threeC'-smoothness conditions of the latter form, but we observe thatindependent of which
conditionis chosenthe valueafis always the same. Heneg,is uniquely determined. For
instance, we Computeéz‘[o,o‘m = as2(200 + a;21020) + as21002 — 2 a11000]- We conclude
that the coefficienta;, ¢ D?(v) are uniquely determined.

Let us assume that we have already shown that the coefficigntse D"=1(v), where
m € {3, ..., g} are uniquely determined. We now prove that the coefficient€ € R (v)
are uniquely determined. To do this, let us note first that it is obvious that all the points in the
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Table 2
Comparison of dimensions of splines on the tetrahedraltelh 1)

g dmStda11) dimSPUq11)  dimS;T(4a11)
1 4 14 96
2 16 65 240
3 52 175 480
4 136 369 840
5 292 671 1344
6 548 1105 2016
7 916 1695 2880
8 1432 2465 3960
9 2116 3439 5280

interior of the edges of the subcubes associated with theRifig) are contained im7Q.
Moreover, we havé™ ™ #+10.91 ¢ Af, wherep € {2,...,2(m —1)— 2}, peveng €
{0,2m—1},7 € {o+1,2m—1—0}, v =1, 2, 3. (Forthe case: = 3, these are the black dots
in the interior of the triangles shown in Fig.) From the induction hypothesis, we know that
the coefficients associated with the domain poin®1tr(v) are uniquely determined, and
therefore it follows from (4.7), wherg f3, 7, {, andy areasin(4.8)and € {2, ..., 2(m —
1)—2}, o even, that the coefficientg, ¢ € @" (v), are uniquely determined. Moreover, the
remaining points inthe interior of the triangles on the square faces of the subcubes associated
with the ringR"™ (v) are contained io\ o, and hence the'1-smoothness conditions (4.4),
wherew, , andy are as in (4.6) angg € {0,2m}, ¢ € {1,...,2n — 1}, imply that
as is uniquely determined i€ € A" (W)\{E™P7 . p g, ¢ € {0, 2m}}. In particular,
by using the argument from the bivariate theory mentioned above, the coeffigignts
whereé = gmlmpmml -, 10 2m}, v = 1,2,3, are uniquely determined. Any of
the coefficientszz, ¢ = &™17%7 p 5,1 € {0,2m) (which correspond to one of the
eight corners of the subcube associated Wth(v)) is involved in threeC1-smoothness
conditions which we have not used, yet, i.e. conditions of the ferm)(wherex, S, 7, {,
andy are as in (4.8) and € {0, 2(m — 1)}. By the induction hypothesis, the coefficients
ag, whereé = gn—Llpot 6 1 e {0, 2(m — 1)} are already uniquely determined, and
therefore the same argument as in the case- 2 shows that the coefficients, ¢ =
gmlead = 6.1 e {0, 2m} are uniquely determined. We conclude that the coefficients
ag, ¢ € R™(v) and hence the coefficientg, ¢ € D™ (v) are uniquely determined.

The proof of the theorem is complete. [

The next result is obtained by counting the number of points in the minimal determining
setM for Sql(A(l,l,l)), q =2, defined in (5.2). In Tabl@ we compare the dimension of
these spaces with the dimensions of continuous and non-continuous splines on the same
tetrahedral celh(1,1,1).

Theorem 5.2. The dimension Qf;(A(l)l)l)), g>2, is given by4 (g% — 3¢° + 59 — 2).
Proof. Let us denote by/,, the number of points irD™ (v) N MQ, m=2...,q9.A

simple count shows that there ate- 1 points fromM o on each of the twelve edges of the
subcubes associated wiRl” (v). Moreover, twelve triangles on the square faces of these
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Fig. 7. The choice of points fok1 in the case; = 3. The figure shows the ring%z(v) (left) andR3(v) (right),
where the points of\1 are marked by black dots. These are all the pointst, sinceD(v) N Mo =10

Fig. 8. The choice of points faM ¢ in the case; = 2. The figure shows the ring2(v), where the points of
M g are marked by black dots. These are all the point&tf, sinceD(v) N Mo =90

subcubes contai(‘?’z_z) points from/\’ZQ in their interior, and the remaining twelve of these
triangles contaim — 2 + (’”52) points fromM g in their interior. Hence, it follows that
the setR™(v) N M contains exactly 12m — 1) + 12 (m — 2) + 24 ("’52) points for

m € {2,...,q}. Therefore, the recurrence relation
dy = dy—1+ 24m — 36+ 24 (",?) (5.3)
is satisfied form € {3, ..., g}. Sinced, = 16, it follows from induction and some elemen-

tary computations that, = 4 (¢®=3¢°>+59—2), g=2. Sinced,; = #(ﬂg), the proof
of the theorem is complete. [J
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We proceed by defining another subsety < D, 4, ,,,, Which is also a MDS for

S;(A(l,l,l)), g > 2, but different fromﬂQ. To do this, again we need some auxiliary sets
whichwe denote by (v), 2™ (v), T (v),and®™ (v), m = 2,...,q.Forme {2, ..., q},
we set

)= | U | gmimeen

pe{O’Zm} oe(l,....2n-1} y=1,2,3

1€{g,2m—a}

and
m (v) :z{ém,[Zm,Zm,Zm]} U {ém,[m(Z,Zm,Zm)]’ v=1,2 3}

The set?™ (v) is similar to the setd™ (v), but different. The difference is that the points
at the eight corners of the subcubes (see previous section) associated with tR& ¢ing
are not contained it? (v). In Figs.7 and8 the points from¥"™ (v) are show as grey dots.
Here, we use the above mapping for the rings again (see top @)Figdicate the essential
domain points by grey boxes, and show the cages 3 (andm € {2,3}) andg = 2
(andm = 2), respectively. Moreover, the points 8f (v) are marked as white dots which
contain a small black dot. In addition, we E€(v) = @ and form € {3, ..., g}, we set

v(p+1,1, J[me(p+1,2m,1
T (v) = U U (emim(p+ 2m)] gmlm (o 2m. )],

pef2,...2m-1)-2} y=1,2,3

p even

6m,[7fv(ﬂ+l,2m,2mfl)]}.

The setY™ (v) is similar to®" (v), but different. Again, these sets describe certain points
being at a distance one to some of the interior triangular faces;of 1, with two vertices

of Q. In Fig.7, we show the points froif™ (v) as white dots—in this case we haxe= 3,
and 7 3(v) consists of nine points. Moreover, we let fare {2, ..., g — 1},

D" (V) = U U {£M,[7T\*(Pv0’0)]}’

p€{0,....2m} v=1,2,3

p even

and set®?(v) = . The setsd™ (v) describe domain points (outside Bf(v)) on the
interior triangular faces ofl 1 1 1) with vertex(0, 0, 0), which do not lie on the boundary
of Q. In Fig.7, we mark the points of the sét" (v) (wherem = 2) with a cross. Note that
for ¢ = 2 there is only one set of the ford” (v), and this set is empty, while fgr>3
there are; — 2 non-empty sets of the ford™ (v).

Roughly speaking, the séi1 is now defined by removing the points from the above
sets frome,A(l_lvl)\Dl(v). Figs.7 and8 illustrate the caseg = 3 and 2, respectively. In
these figuresM o consists of all the points shown as black dots surrounded by grey boxes.
Forg = 3 the number of these dots is1943 = 52, while forg = 2 this number is 16.
More precisely, we define

q
Mo = (Rm(v)\(‘Pm(v) UE™ () UT™(v) U <1>'"(u))). (5.4)

m=2
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Theorem 5.3. The setM o is a minimal determining set fcﬁj(A(l,l’l)), q=2.

Proof. It suffices to show that1 is a DS forS(}(A(l,l,l)), while the number of points in
M coincides with the dimension cﬂ‘ql(A(l'l'l)), q=2.

We first show that the cardinality of(i#1,) denoted by, coincides with the number
given in Theoren®.2, i.e. we have to show thaf = 4 (¢% — 3¢°> +5¢ — 2), ¢ >2. Thisis
certainly true foy = 2, since in this case, the séty = R?(v)\(¥?(v) U5?(v)) contains
16 points, i.ec2 = 16. (See Fig8, where the points fronM o are marked as black dots
surrounded by grey boxes.) Moreover, the choice of poinsfig implies that forg > 3,

¢g = (cq_l _ #(tbq’l(v))) n #(Rq(v) n MQ)
_ (cq_l —@3q- 2)) + ((12q 4 —4415(q—2)+24 (452))
= cq_1+ 244 — 36+ 24(133).

A comparison of this recursion with (5.3) now shows thats the number we claimed.

It remains to show that\ is a DS foqul(A(l,l,l)), g=>2, i.e. we have to show
that for any splines € S}(A1,1.1) With az = as(s) = 0, & € My, it follows from
the C1-smoothness conditions of the form (4.4), where8, andy are as in (4.6), and
(4.7), wherez, f, 7, {, andy are as in (4.8), that = 0. We prove this claim by induction
ong.

First, we consider the cage= 2. Lets € Szl(A(l,l,l)) be given such that: = 0, where
¢ e Mg, ie ¢ e REw\(P%(v) U E2(v)). Henceas = O, if ¢ = 2Mm@o01 where
g,7€{0,...,4},0,7even,(o,7) # (2,2),v =1,2 3. It follows from the smoothness
conditions of form (4.4), where, 5, andy are asin (4.6) ang =0, m = 2, thata; =0
if ¢ = &2m0oDl 5 e (1,3}, v=1,2 3, anda; = 0if & = ¢2MO0221 'y —1 2 3
Moreover, we have; (s) = 0if & = ¢2m@LD1, — 1 2 3 By using thec1-smoothness
conditions of form (4.7), where = ¢1™ (@001 g, ¢ andy are as in (4.8) anat = 2,
we obtainthatz: = 0, ¢ € D, whereD is the setdefined in (5.1). Therefore, it follows from
the arguments given in the beginning of the proof of TheoBehthata; =0, ¢ D).
By using some of the conditions of form (4.7), where 5, y, {, andy are as in (4.8)
andm = 2, we geta; = 0, if ¢ = (2ME3 or ¢ — 2IMAAI] -, — 12 3 Now,
some of the conditions of form (4.4) whete f, andy are as in (4.6) and = 4, m = 2,
imply a; = 0, if & = &2m4221y = 1.2 3, and henceg; = 0 if ¢ = &M @4D)]
or ¢ = g2m@331 \ — 1 2 3. It follows from the remaining thre€1-smoothness
conditions of form (4.7), i.ex = ¢+#22) in (4.8), thaw; = 0, if ¢ = ¢14*4 and hence
s =0.

Let us assume that we have already shown that the above claim holds tgue forand
let a splines Sql(A(l,l,l)), q >3, be given which satisfies:(s) = 0, { € M. Then, it
follows from the conditions of form (4.4), whete f, andy are asin (4.6) and =0, m =
g, thataz(s) = 0, if ¢ = ¢0m@oD g 1 |29 -1}, 1€{0,29 — 0}, v=1,2,3.
Moreover, we have; = 0 if ¢ = &m@1.D1 0y — 1 2 3. By using theC-smoothness
conditions of form (4.7), where = ¢~ Lm@001 g ¢ andy are as in (4.8) and
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m = g, we obtain thatz: = 0, ¢ € @7~1(v). Therefore, it follows from the choice of
points in M and the induction hypothesis that = 0, ¢ € D7~1(v). By using some
of the conditions of form (4.7), where, 3, y, {, andy are as in (4.8) andh = ¢, we
geta: = 0,if ¢ = éq,[n‘.(p+l,l,2q)] oré = fl],[ﬂv(P-i-laZI»l)]’ pef2...,2(g— D}, p
even,v = 1,2, 3. Note that most of these points are contained #(v). Now, three of
the conditions of form (4.4) wherg, f5, andy are as in (4.6) and = 2g, m = ¢, imply
az = 0,if & € E9(v)\{&4120:%4-21]) The choice 0f\M ¢ and theC1-smoothness conditions
of form (4.7), wherey = ¢4~ 1M0:20-224=21 g ., " ¢ ‘andy are as in (4.8) anth = g,
imply that the remaining coefficients associated with points fithtv) do vanish, i.e. we
haveas = 0if ¢ = MW h2.20=D1 5 c 5 2(g — 1)~ 2}, peveny =12 3.
Moreover,a: = 0 if & = &M@1-20=1.2=D1 ", _ 7 2 3 Therefore, the choice of points
in M and the smoothness conditions of form (4.4) wherg, andy are as in (4.6) and
p=2q, m=gq,implya; = 0,if ¢ = ¢0™@001 51 271}, 1€ {5,290}
Moreover,a; = 0 if ¢ = ¢1™@:20-1.2=Dl -y, — 1 2 3 Note that now it can be seen
that all the coefficients associated with points from thefsgt) vanish. It follows from the
remaining thre€ 1-smoothness conditions of form (4.7), we= ¢4~ 12 —1D.2¢=1),2¢=1]
in (4.8), thata; = 0, if ¢ = ¢71%:24:21] gand hence = 0.

This completes the proof of the theorem.d

6. A minimal determining set for S‘}(A), proof of main results

We construct a MDSM for Sql(A), q =2, where4 is a type-6 tetrahedral partition as
in Section 3. To do this, we use the results from the previous section. In particular, we use
thatM g is aMDS forS‘}(A(l,l,l)), g > 2—a close inspection of the proof of Theorém
given below shows that this set is in fact needed for three of the four cases which appear in
this inductive proof. Counting the number of pointstf, we establish the explicit formulae
for the dimension given in TheoreBnl. Note that the construction #ff gives some insight
into the structure of the trivariate spline spaces.

In the following, we defineM. To do this, we need some auxiliary sets. First, we let
0 = Qa.1,1again Mg asin (5.4), and setfar j, k € {1,...,n}

M ji ={C € Dqu(i,j.k) rC- (%’ %’ %) € Mo} (6.1)

Hence, M; ; 1) is a “shifted” version of the MDSM for S;(A(l,l,l)) from the pre-
vious section. Obviously, we havét; 11y = M. Moreover, we letAd; i, i =

2,...,n, j,k =1,...,n, be the set of domain points fro®, 4, which are at a

distance zero or one to the left square fa"é@,. o of Qu.ji, Bajiys J=2,...,n, i, k=
1,...,n, the set of domain points fro®,  ,,, which are at a distance zero or one to the

front square facé—“([l.zq]j’k) of Qaijikys andCq k) k= 2,...,n,i,j =1,...,n, the set
of domain points fronD, 4 ., Which are at a distance zero or one to the bottom square

facef{fi.k) of Q. ;1. Itis not difficult to see that the set(; ; x) contains all the points
from D, 4, ,,, Where the associated Bernstein—Bézier coefficients are influenced by the
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C1-continuity across the facf[ o Similarly, the setd3(; j ry andC ), respectively,
contain all the points fronD, A( ., Where the assomated Bernstein—Bézier coefficients

are influenced by the'*- contlnmty across the face9§ ik and]—'[3 ik respectively. For
the case; = 3, the sets4 j x), By, j.x, andCi j x), are |IIustrated in Fig4, where the
points fromA ;. x), B, j.k, andCq_j r) are marked as grey dots, large circles and crosses,
respectively.

Roughly speaking, the séit1 is now defined by choosing the points from the shifted
versionsM; ; iy of My, and removing those points of these sets which are at a distance
zero and one of some of the square face@ gf; «). Depending o, j, k there are one, two
or three square faces for which the points are removed. More precisely, we define

M = M(l,l,l)

u U ((M(i,l,l)\-A(i,l,l))U(M(l,i.l)\B(l.i,l))
i€{2,...,n}

U (M(l,l,i)\c(l,l,i)))

2
U U ((Mi,j. 0\ (AG.j.1) U B 1) U (M1, )\ (Ad.1.)) (6.2)

U Cii,1,j)) Y M,i ) \(Ba,i j YCa.i )

v U ((M(i,j,k)\(A(i,j,k) U B kU C(i,j,k)))-
i ke(2,...n)

Theorem 6.1. The setM is a minimal determining set fcﬁc}(A), q=2.

Proof. Let arbitrary coefficients: = as(s), ¢ € M, of a splines Sl(A) qg=>2, be
given. We have to show that all coefficientsspfi.e. the coefficients,, Wheref € Dy.p,
are uniquely determined, while all th@é!-smoothness conditions of form (4.4), where
o, f, andy are as in (4.5) or4.6), and (4.7), where, f, y, {, andn are as in (4.8), are
satisfied.

Our method of proof is to show inductively that the coefficients ¢ € Dy a;,, =
Dy,n N Qg jk are uniquely determined far j, k € {1,...,n}, where we consider the
cubes Q. jx in an appropriate order. This natural order is as follows. First, we con-
sider the case§, j,k) = (i,1,1), i = 1,...,n. Then, we consider the cas@sj, k) =
@4, 5,0, j=2,...,n,and(, j, k) = (1,1,k), k= 2,...,n. Here, we use the result of
Theorenb.3and we have to take th@!-continuity across exactly one square face of the cube
into account. We proceed by considering the caseg k) = (i, j,1), i,j = 2,...,n,
@, j, k)= G2L1k), i,k=2,...,n,and(i, j,k) = (1, j, k), j, k= 2,...,n. Again,
we use Theorerb.3 but now we have to take th@!-continuity across exactly two square
face of the cube (which have a common edge) into account. Finally, we consider the cases
@, j, k), i,j,k=2,...,n. This is the most difficult case. We can use TheoteB8again
and have to take thé!-continuity across exactly three square faces of the cube (which have
a common point) into account.
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First, it follows from Theorenb.3and M11) = Mo < M that the coefficients
ag, wherel € Dy aqq. = Qa.1.1) N Dy are uniquely determined. We proceed by
considering the cub@,1,1). This cube has exactly one face in common witky 1,1),
namely the face?([fll 1y = }‘2 1.1 1t follows from the continuity (i.e. (4.2), where

and f§ are as in (4.3) and = 1), the C1-smoothness conditions of form (4.4), where

o, f, andy are as in (4.5) and = 1, and theC-smoothness conditions of form (4.7),
whereo = éqz 111())” Y that the coefficienta;, ¢ € A1,1) are determined. Note that
these coeff|C|ents are also uniquely determined—this concerns in particular the coefficients
ag, whereé e RIY(v@1.1) N 7)([%,]1,1)- By using some elementary computations or an
argument similar to Lai and Le Méhaujg6], one can see that if these coefficients are
determined using the above conditions, then@esmoothness conditions of form (4.4),
whereo, f, andy are as in (4.6) angg = 0, v = 1, are automatically satisfied, too.
Here, it is essential that the coefficienats wherel € (R (v(1,1,1) U Rq—l(v(lqlﬁl))) N

7)([11?1,1) already satisfy conditions of this form. The skt in (5.4) is constructed such

that the following property is satisfied: if the coefficieats wherel € M2.1,1)N A2,1,1),

are given, then the coefficienis, ¢ € A2 1,1) are uniquely determined from thel-
smoothness conditions involving these coefficients. Therefore, an argument along the lines
of the proof of Theoren®.3 using the definition oM 1,1y and M 2,1, 1)\ A,1,1) S M

shows thatz¢ is uniquely determined if Dy.rp11y) = Q211N Dy a, while all the
Cl-smoothness conditions of form (4.4) and (4.7), where 2, j = 1, andk = 1,

are satisfied. It now follows from induction, the choice of pointsAih, and the same
arguments that; is uniquely determined f € Dy ;)0 € Dy a1, 078 € Dy.ngass

ief{2 ...,n}.

Next, we consider the cub@» 2 1). According to the above ordering, this cube has
exactly two faces in common with some of the cubes considered before, namely the faces
7:([;1,]2,1) = ]—'([21’]2’1) and]-"([g]l,l) = ]:([22,]2,1)- It follows from the continuity (i.e. (4.2), where
« andf are as in (4.3) and € {1, 2}), the C-smoothness conditions of the form (4.4),
whereo, ff, andy are as in (4.5) and ¢ {1 2}, and theC!-smoothness conditions of

the form (4.7), where, = 5!(12—21,1[?,/),11 5;12211’)’0” that the coefficients;, ¢ €

A@21)U 852 2.1) are determined. Since tldél—smoothness conditions along the edge with

endpoints(, 1,0) and(2, 1, 1) are consistent, it is clear that the coefficiemts where
&= 632’21,1[?0” , pef0,...,2(qg—1)}, peven, are uniquely determined. Moreover, using

the above argument again, we can see that the coefficigntghere¢ < R‘Fl(v(z,z,l)) N

(73(2 21) Y P([S}Z’l)) are uniquely determined while all th@é*-smoothness conditions of
form (4.4) involving these coefficients are satisfied. Henge,l € A@22,1) U Bz21) are
uniquely determined. The s@tl, in (5.4) is constructed such that the following property

is satisfied: if the coefficients:, whered € M 2,21y N (A@2,2,1) U B2,2,1)), are given, then

the coefficienta, ¢ € A 21)UB¢2 2 1) are uniquely determined from tl&'-smoothness
conditions involving these coefficients. Therefore, an argument along the lines of the proof
of Theorem5.3 using the definition oM 22,1y and M 2.2,1)\(A2,2.1) U B2.2,1)) S M
shows that:: is uniquely determined i € D, ., = Q@21) N Dy.a, While all the
C1-smoothness conditions of form (4.4) and (4.7), where 2, j = 2, andk = 1,
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are satisfied. It now follows from induction, the choice of pointsAih, and the same
arguments that; is uniquely determined if Dy.n6.j) oré e Dy.ngaj oré e Dy.nqijye
i,jel{2 ..., n}.

Finally, we consider the cub@ > > 2. According to the above ordering, this cube has
exactly three faces in common with some of the cubes considered before, namely the

4] (1] 5] 2] 6] 3]

faces]—‘(lﬁzz) = ]—‘(2’2,2), 7:(2,1,2) = }'(2’2'2), and}'(z’z,l) = ]—‘(2’2,2). It follows from the
continuity (i.e. (4.2), where and are as in (4.3) and € {1,2, 3}), theCl-smoothness
conditions of form (4.4), where, 5, andy are as in (4.5) and € {1, 2, 3}, and theC1-

smoothness conditions of form (4.7), where- &{; 2125’ %" with p = 0ore =0ort =0,

that the coefficienta:, ¢ € A 22 U Bpz2z2 UC2.2.2 are determined. Since the!-
smoothness conditions along the edges with endpénts, 1) and(2, 1, 1) (1 1 1)

n’n’n n’n’n

and(%, 2 1) (1 1 1)and(L, 1 2) respectively, are pairwise consistent, it is clear that

n’>n’n n’n’n

the coefficients::, whereé = éqz ;2[;”‘(9 001 he0,...,2(g — 1)}, peveny =1,2,3,
are uniquely determined. Moreover, using the above argument again, we can see that the
coefficientsa:, wherel e Rq*l(v(z,z,g)) al (7)([5,]2,2) U P([g,]z,z) U P([g’]z’z)) are uniquely
determined while all thé 1-smoothness conditions of form (4.4) involving these coefficients
are satisfied. Hence;, ¢ € A@222) UB@22) UCq2z22) are uniquely determined. The set
M in (5.4) is constructed such that the following property is satisfied: if the coefficients
ag, whereé e M22) N (A@22 U B@ez22 UCa2z2.2), are given, then the coefficients
ag, ¢ € A@22 UBp22 UCq2z2z2 are uniquely determined from thel-smoothness
conditions involving these coefficients. Therefore, an argument along the lines of the proof
of Theoren®.3using the definition aM 2, 2 2y andM 2,2 2)\ (A2,2,2)UB2,2,2)UC2,2,2)) <
M shows thatz¢ is uniquely determined if € Dy.rp2s = Q@22 NDga, while all the
Cl-smoothness conditions of form (4.4) and (4.7), whieee 2, j = 2, andk = 2, are
satisfied. It now follows from induction, the choice of points\ih, and the same arguments
thata is uniquely determined if < Dy, ngjn» b Jok €{2,... n}.

This shows that all coefficients sfare uniquely determined, while all-smoothness
conditions ofS(}(A), g > 2 are satisfied, and the proof of the theorem is completél

By counting the number of points ifvf, we now obtain the result stated in Theor&r.

Proof of Theorem 3.1. Theoremb.2 shows that the set1(1, 1,1y = M contains 4q° —
3¢%+5¢—2) points forg >2, and it is obvious that this is also the number of points in every
setM; j x) definedin (6.1). Since the cardinality 0 2 1,1)N.A2,1,1) IS4(q2—2q+3) if

g >3,and 11, iy = 2, itfollowsthatthe seM 2 1,1)\\A(2,1,1) contains 443 —4q%+7q—5)
points fromM, if ¢ >3, and 5 points from\, if ¢ = 2. The same number of points from
M are contained in the cube®; 1.1), Q1.;,1), and Q.1 i = 2, ..., n. Therefore, the
total number of points in\ contributed by all of these cubes is(43 — 3¢ + 5¢ —
2)4+12(n — 1)(¢® — 49% + 7q — 5), if ¢ =3, and 16+ 15 (n — 1), if ¢ = 2. The
cardinality of M2,2.1) N (A@2.2,1) YU Bz.2.1)) is 842 — 199 + 23, if ¢ >3, and 15, ify = 2.
Therefore, the seM 2,2.1)\(A.2.1) U B(2.2.1)) contains 4q3 — 3¢? + 5q — 2) — 8¢% +
19¢ — 23 = 4¢3 — 2042 + 394 — 31 points fromM, if ¢ >3, and one point from\,

if ¢ = 2. The same number of poings! are contained in the cubea3; ; 1), Q¢ 1,/
andQq.,i j, i, j = 2,...,n. Therefore, the total number of points.ivl contributed by
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all of these cubes is & — 1)?(4¢® — 20¢° 4+ 39¢ — 31), if ¢=>3, and 3(n — 1)?, if
g = 2. The cardinality oM 2.2.2) N (A2,2,2) U B2,2.2) UC2,2.2)) IS 121,]2 —33¢+ 37, if
g >3, and 16, ify = 2. Therefore, the se¥(22,2)\(A2,2,2) U B(2,2,2) U C(2.2,2)) contains
4(g3—3¢%+5q—2) — 1292 +33q— 37 = 4q° — 2442 +53g— 45 points fromM, if g >3,
and no point fromM, if ¢ = 2. The same number of pointst are contained in the cubes
Q. jk 1, j,k=2,...,n. Therefore, the total number of points.v contributed by all
of these cubes ig: — 1)3(4¢° — 2442 + 53¢ — 45), if ¢ >3, and no point, iy = 2. Adding
these numbers together, an elementary computation now shows that the total number of
points in M coincide with the numbers given in (3.3) and (3.4), respectively.
The proof of Theoren3.1is complete. [

7. Remarks

Remark 7.1. The results of this paper can be extended to more general domains where
the inductive arguments from the proof of Theorérhcan be applied (see Fig). Simple
examples of more general domains are obtained from cube partitions where there are
cubes in thgth space direction; = 1,2, 3, i.e. a total number of1non3 cubes. In this
case, the dimension of the corresponding spline spﬁz}:(GzS) is given by

ning + ninz + nanz + 3 (n1 + n2 + n3) + 4, ifg=2
and

(4q° — 24q° 4 53¢ — 45) mnong + 2 (29> — 7q + 7) (nnz + ning + nons)
+3(q—1) (nm1+n2+n3)+4, if g>3.

Remark 7.2. In Alfeld et al.[4, Theorem 4] formula for the dimension faf-splines of
degree> 8 ongeneric tetrahedral partitions was given. The numbers given in The&rém
and Corollary3.2 do not coincide with these dimensions and therefore we conclude that
A, the tetrahedral partition defined in Section 3, is non-generi€fesplines, in general.
Moreover, we note that in Alfeld et al4, Examples 7 and s well as in Alfeld et al.

[3, Example 261he dimension of splines on particular cells is computed. These cells are
different from the cell considered in Section 5.

Remark 7.3. In Section 3, we compared the dimensio@dfspline spaces with the dimen-

sion of C%-spline spaces on type-6 tetrahedral partitions, where we observe that the relative
difference becomes smaller with larger degrees. We also note that the dimension of trivari-
ate C1-spline spaces is much larger than that@ftensor spline spaces @ S ® S3

of the same total degree. (He@}, is the space of univariat€!-splines w.r.t. the knots

;l#, i =0,...,n)If g = 3d, then these spaces are subspac@aﬁ) which satisfy many
super-smoothness conditions across the interior triangular fagke$-of instance, itis easy

to see that the (tri)quadratic!-tensor spline spac§} ® S ® S3 € Sa(), has dimen-
sionn®+ 1212+ 6 n + 8, which is much smaller than 278 +222n% +45n + 4, i.e. the
dimension ofS3(A). Similarly, the dimension of the subspate® 53 & S3 € S3(A),
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Fig. 9. A more general domai@ decomposed in uniform cubes

is much smaller than the dimensiongﬁﬁ(A). Moreover, the local Hermite interpolation
approach of Lai and Le Méhaul€6] for type-6 tetrahedral partitions is based on a sub-
space ofS2(4) of dimension 1023 + O(»n?). Independently, Schumaker and Sorokina
[29] constructed the first box macro element which is baseﬂgajzi). This approach uses
a subspace a$%(4) of dimension 43:2 + O(n?).

Remark 7.4. The local interpolation methods mentioned in Remafkyield optimal ap-
proximation ordely + 1 for the space§q1(A), if ¢ € {5,6}, and may be generalized to

g > 7. However, itis not possible to extend these methods to lower degrees, because of some
structural reasons (see, for instance Remark 729}). Currently, only little is known con-
cerning the approximation properties of the spaces when(3, 4}. Our results presented

here indicate that it seems reasonable that for quartic and perhaps foujidines on

A, appropriate operators with approximation properties can be d¢806gd his seems not

to be possible for the spaSé(A) which has?(n?) degrees of freedom. On the other hand,
recently Rossl et a[23] (see alsd18]) applied the structural analysis of this paper to turn

it into a practical volume visualization method. This approach uses quadiasplines

on 4 satisfying most of th€1-smoothness properties. The computational results and com-
parisons presented in these papers showed that from a practical point of view the quadratic
splines behave similarly ag!-functions. The basic idea in this method is to relax some of
the conditions of form (4.4) and (4.7) and to replace them by different useful conditions such
that appropriate operators for the quadratic splines can be defined which simultaneously
approximate the values and the derivatives of smooth trivariate functions. Compared with
previously existing methods in the area, the new algorithm combines several advantageous
features which are desirable taking in account the specific requirements of efficient volume
visualization.
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